A perturbation basis for calculating NMR Diffusometry

作者: Matias Nordin

DOI:

关键词:

摘要: An approximative method for solving the Bloch-Torrey equation in general porous media is presented. The expand boundaries defining using electrostatic charges. As a result eigenvalue problem of Laplace operator confined geometry can approximately solved. Importantly solution orthogonal low-frequent region Fourier space. This gives natural approach studying spin magnetization presence magnetic fields. error approximation scales with N^{-2} times magnitude each eigenvalue, where N size expansion matrix. From computational point view, calculations scale quadratically number basis functions fast multipole methods.

参考文章(16)
William S. Price, NMR Studies of Translational Motion ,(2009)
Magnus Nydén, Matias Nordin, Martin Nilsson-Jacobi, A Mixed Basis Perturbation Approach to Approximate the Spectrum of Laplace Operator arXiv: Chemical Physics. ,(2009)
H. C. Torrey, Bloch Equations with Diffusion Terms Physical Review. ,vol. 104, pp. 563- 565 ,(1956) , 10.1103/PHYSREV.104.563
S. Amini, On boundary integral operators for the Laplace and the Helmholtz equations and their discretisations Engineering Analysis With Boundary Elements. ,vol. 23, pp. 327- 337 ,(1999) , 10.1016/S0955-7997(98)00055-1
Matias Nordin, Martin Nilsson-Jacobi, Magnus Nydén, A mixed basis approach in the SGP-limit. Journal of Magnetic Resonance. ,vol. 212, pp. 274- 279 ,(2011) , 10.1016/J.JMR.2011.07.002
Eric Darve, The Fast Multipole Method: Numerical Implementation Journal of Computational Physics. ,vol. 160, pp. 195- 240 ,(2000) , 10.1006/JCPH.2000.6451
Partha P. Mitra, Pabitra N. Sen, Lawrence M. Schwartz, Short-time behavior of the diffusion coefficient as a geometrical probe of porous media. Physical Review B. ,vol. 47, pp. 8565- 8574 ,(1993) , 10.1103/PHYSREVB.47.8565
A.V. Barzykin, Theory of Spin Echo in Restricted Geometries under a Step-wise Gradient Pulse Sequence Journal of Magnetic Resonance. ,vol. 139, pp. 342- 353 ,(1999) , 10.1006/JMRE.1999.1778