Faces of weight polytopes, a generalization of a theorem of Vinberg and Koszul algebras

作者: Timothy Blake Ridenour

DOI:

关键词:

摘要: Let $\g$ be a reductive Lie algebra over $\C$ and let $V$ $\g$-semisimple module. In this article, we study the category $\ghat$ of $\Z_+$-graded $\g\ltimes V$-modules with finite-dimensional grade pieces. We construct classify certain special subsets called {\it weak $\F$-faces} set weights $V$. If is generalized Verma module, our result allows us to recover extend due Vinberg on classification faces weight polytope.If semisimple simple, use positive} $\F$-faces large family Koszul algebras which have finite global dimension. are also able truncated subcategories directed highest weight.

参考文章(18)
B. Parshall, L. Scott, E. Cline, Finite dimensional algebras and highest weight categories. Crelle's Journal. ,vol. 391, pp. 85- 99 ,(1988)
Basic Theory, Kac-Moody Groups Birkhäuser, Boston, MA. pp. 173- 197 ,(2002) , 10.1007/978-1-4612-0105-2_6
Alexander Beilinson, Victor Ginzburg, Wolfgang Soergel, Koszul Duality Patterns in Representation Theory Journal of the American Mathematical Society. ,vol. 9, pp. 473- 527 ,(1996) , 10.1090/S0894-0347-96-00192-0
Vyjayanthi Chari, T. Ridenour, R. J. Dolbin, Ideals in Parabolic Subalgebras of Simple Lie Algebras arXiv: Representation Theory. ,(2008)
Joseph Albert Wolf, Spaces of Constant Curvature ,(1984)
Günter M. Ziegler, Lectures on Polytopes ,(1994)
Apoorva Khare, None, Category O over a deformation of the symplectic oscillator algebra Journal of Pure and Applied Algebra. ,vol. 195, pp. 131- 166 ,(2005) , 10.1016/J.JPAA.2004.06.004