Convergence rate analysis for averaged fixed point iterations in the presence of H\"older regularity

作者: Jonathan M. Borwein , Guoyin Li , Matthew K. Tam

DOI: 10.1137/15M1045223

关键词:

摘要: In this paper, we establish sublinear and linear convergence of fixed point iterations generated by averaged operators in a Hilbert space. Our results are achieved under bounded H older regularity assumption which generalizes the well-known notion regularity. As an application our results, provide rate analysis for Krasnoselskii– Mann iterations, cyclic projection algorithm, Douglas–Rachford feasibility algorithm along with some variants. important case underlying sets convex described polynomials finite dimensional space, show that properties automatically satisfied, from follows.

参考文章(42)
Patrick L. Combettes, Heinz H. Bauschke, Convex Analysis and Monotone Operator Theory in Hilbert Spaces ,(2011)
René Escalante, Marcos Raydan, Alternating Projection Methods Society for Industrial and Applied Mathematics. ,(2011) , 10.1137/9781611971941
Jacek Bochnak, Marie-Françoise Roy, Michel Coste, Real Algebraic Geometry ,(2017)
Damek Davis, Convergence Rate Analysis of the Forward-Douglas-Rachford Splitting Scheme Siam Journal on Optimization. ,vol. 25, pp. 1760- 1786 ,(2015) , 10.1137/140992291
P.L. Combettes, The Convex Feasibility Problem in Image Recovery Advances in Imaging and Electron Physics. ,vol. 95, pp. 155- 270 ,(1996) , 10.1016/S1076-5670(08)70157-5
Jonathan M. Borwein, Brailey Sims, The Douglas–Rachford Algorithm in the Absence of Convexity Fixed-point algorithms for inverse problems in science and engineering, 2011, ISBN 978-1-4419-9568-1, págs. 93-109. pp. 93- 109 ,(2011) , 10.1007/978-1-4419-9569-8_6
Pontus Giselsson, Tight Global Linear Convergence Rate Bounds for Douglas-Rachford Splitting arXiv: Optimization and Control. ,(2015)
B. F. Svaiter, On Weak Convergence of the Douglas–Rachford Method SIAM Journal on Control and Optimization. ,vol. 49, pp. 280- 287 ,(2011) , 10.1137/100788100
Bingsheng He, Xiaoming Yuan, On the $O(1/n)$ Convergence Rate of the Douglas-Rachford Alternating Direction Method SIAM Journal on Numerical Analysis. ,vol. 50, pp. 700- 709 ,(2012) , 10.1137/110836936