Computation and Formal Verification of SRT Quotient and Square Root Digit Selection Tables

作者: D. M. Russinoff

DOI: 10.1109/TC.2012.40

关键词:

摘要: We present a comprehensive, self-contained, and mechanically verified proof of correctness maximally redundant SRT design for floating-point division square root extraction, supported by procedures that 1) test the admissibility proposed digit selection table, 2) determine minimal dimensions an admissible table given arbitrary radix, 3) generate these tables. For we also provide procedure generating initial approximation meets accuracy requirement algorithm ensures index derived from successive partial roots remains static throughout computation. A radix-8 instantiation algorithms has been implemented in unit AMD processor code-named Steamroller. To ensure their correctness, all our results have formalized checked ACL2 prover. evidence value this approach comparing it to more conventional published paper reports similar results, which are shown be fatally flawed.

参考文章(13)
Deepak Kapur, M. Subramaniam, Mechanizing Verification of Arithmetic Circuits: SRT Division foundations of software technology and theoretical computer science. pp. 103- 122 ,(1997) , 10.1007/BFB0058026
Harald Ruess, Natarajan Shankar, Mandayam K. Srivas, Modular Verification of SRT Division formal methods. ,vol. 14, pp. 45- 73 ,(1999) , 10.1023/A:1008617612073
Edmund M. Clarke, Steven M. German, Xudong Zhao, Verifying the SRT Division Algorithm Using Theorem Proving Techniques formal methods. ,vol. 14, pp. 7- 44 ,(1999) , 10.1023/A:1008665528003
G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A. Krygowski, B. M. Fleischer, M. Kroener, The IBM eServer z990 floating-point unit Ibm Journal of Research and Development. ,vol. 48, pp. 311- 322 ,(2004) , 10.1147/RD.483.0311
George S. Taylor, Compatible hardware for division and square root symposium on computer arithmetic. pp. 127- 134 ,(1981) , 10.1109/ARITH.1981.6159293
D.E. Atkins, Higher-Radix Division Using Estimates of the Divisor and Partial Remainders IEEE Transactions on Computers. ,vol. C-17, pp. 925- 934 ,(1968) , 10.1109/TC.1968.226439
Vaughan Pratt, Anatomy of the Pentium Bug colloquium on trees in algebra and programming. pp. 97- 107 ,(1995) , 10.1007/3-540-59293-8_189
R.F. Hobson, M.W. Fraser, An efficient maximum-redundancy radix-8 SRT division and square-root method IEEE Journal of Solid-state Circuits. ,vol. 30, pp. 29- 38 ,(1995) , 10.1109/4.350197
P. Kornerup, Digit selection for SRT division and square root IEEE Transactions on Computers. ,vol. 54, pp. 294- 303 ,(2005) , 10.1109/TC.2005.47
L. Ciminiera, P. Montuschi, Higher radix square rooting IEEE Transactions on Computers. ,vol. 39, pp. 1220- 1231 ,(1990) , 10.1109/12.59853