History dependent quantum random walks as quantum lattice gas automata

作者: Asif Shakeel , David A. Meyer , Peter J. Love

DOI: 10.1063/1.4903977

关键词:

摘要: Quantum Random Walks (QRW) were first defined as one-particle sectors of Lattice Gas Automata (QLGA). Recently, they have been generalized to include history dependence, either on previous coin (internal, i.e., spin or velocity) states position states. These models the goal studying transition classicality, more generally, changes in performance quantum walks algorithmic applications. We show that several dependent QRW can be identified QLGA. This provides a unifying conceptual framework for these which extra degrees freedom required store information arise naturally geometrical lattice.

参考文章(45)
Jason Twamley, Elizabeth Camilleri, Peter P. Rohde, Self-avoiding quantum walks arXiv: Quantum Physics. ,(2014)
Pablo Arrighi, Vincent Nesme, Reinhard Werner, One-Dimensional Quantum Cellular Automata over Finite, Unbounded Configurations language and automata theory and applications. pp. 64- 75 ,(2008) , 10.1007/978-3-540-88282-4_8
C.H. Papadimitriou, On selecting a satisfying truth assignment [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science. pp. 163- 169 ,(1991) , 10.1109/SFCS.1991.185365
Robin Pemantle, Choosing a Spanning Tree for the Integer Lattice Uniformly Annals of Probability. ,vol. 19, pp. 1559- 1574 ,(1991) , 10.1214/AOP/1176990223
Ansis Rosmanis, Quantum Snake Walk on Graphs Physical Review A. ,vol. 83, pp. 022304- ,(2011) , 10.1103/PHYSREVA.83.022304
Andrew M. Childs, Jeffrey Goldstone, Spatial search and the Dirac equation Physical Review A. ,vol. 70, pp. 042312- ,(2004) , 10.1103/PHYSREVA.70.042312
Todd A. Brun, Hilary A. Carteret, Andris Ambainis, Quantum walks driven by many coins Physical Review A. ,vol. 67, pp. 052317- ,(2003) , 10.1103/PHYSREVA.67.052317
KARL PEARSON, The Problem of the Random Walk Nature. ,vol. 72, pp. 294- 294 ,(1905) , 10.1038/072294B0
S. P. Jordan, K. S. M. Lee, J. Preskill, Quantum Algorithms for Quantum Field Theories Science. ,vol. 336, pp. 1130- 1133 ,(2012) , 10.1126/SCIENCE.1217069