Rapid and brief communication: Kernel ICA: An alternative formulation and its application to face recognition

作者: Jian Yang , Xiumei Gao , David Zhang , Jing-yu Yang

DOI: 10.1016/J.PATCOG.2005.01.023

关键词:

摘要: This paper formulates independent component analysis (ICA) in the kernel-inducing feature space and develops a two-phase kernel ICA algorithm: whitened principal (KPCA) plus ICA. KPCA spheres data makes structure become as linearly separable possible by virtue of an implicit nonlinear mapping determined kernel. seeks projection directions space, making distribution projected non-gaussian possible. The experiment using subset FERET database indicates that proposed method significantly outperform ICA, PCA terms total recognition rate.

参考文章(5)
Erkki Oja, Aapo Hyvarinen, Juha Karhunen, Independent Component Analysis ,(2001)
Francis R Bach, Michael I Jordan, None, Kernel independent component analysis Journal of Machine Learning Research. ,vol. 3, pp. 1- 48 ,(2003) , 10.1162/153244303768966085
Chengjun Liu, H. Wechsler, Independent component analysis of Gabor features for face recognition IEEE Transactions on Neural Networks. ,vol. 14, pp. 919- 928 ,(2003) , 10.1109/TNN.2003.813829
Bernhard Schölkopf, Alexander Smola, Klaus-Robert Müller, Nonlinear component analysis as a kernel eigenvalue problem Neural Computation. ,vol. 10, pp. 1299- 1319 ,(1998) , 10.1162/089976698300017467
M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, Face recognition by independent component analysis IEEE Transactions on Neural Networks. ,vol. 13, pp. 1450- 1464 ,(2002) , 10.1109/TNN.2002.804287