Variational problems on classes of rearrangements and multiple configurations for steady vortices

作者: G.R. Burton

DOI: 10.1016/S0294-1449(16)30320-1

关键词:

摘要: Abstract A Mountain Pass Lemma is proved for a convex functional restricted to the class of rearrangements fixed Lp function. Together with results on maximization and minimization relative , this proves existence least four solutions problem steady configurations vortex in an ideal fluid.

参考文章(10)
John V. Ryff, Orbits of ¹-functions under doubly stochastic transformations Transactions of the American Mathematical Society. ,vol. 117, pp. 92- 100 ,(1965) , 10.1090/S0002-9947-1965-0209866-5
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Antonio Ambrosetti, Paul H Rabinowitz, Dual variational methods in critical point theory and applications Journal of Functional Analysis. ,vol. 14, pp. 349- 381 ,(1973) , 10.1016/0022-1236(73)90051-7
David G. Schaeffer, Non-uniqueness in the equilibrium shape of a confined plasma † Communications in Partial Differential Equations. ,vol. 2, pp. 587- 600 ,(1977) , 10.1080/03605307708820040
James Brown, Approximation theorems for Markov operators. Pacific Journal of Mathematics. ,vol. 16, pp. 13- 23 ,(1966) , 10.2140/PJM.1966.16.13
J.A. Crowe, J.A. Zweibel, P.C. Rosenbloom, Rearrangements of functions Journal of Functional Analysis. ,vol. 66, pp. 432- 438 ,(1986) , 10.1016/0022-1236(86)90067-4
G. R. Burton, Rearrangements of Functions, Maximization of Convex Functionals, and Vortex Rings. Mathematische Annalen. ,vol. 276, pp. 225- 253 ,(1987) , 10.1007/BF01450739
John V. Ryff, Extreme points of some convex subsets of ¹(0,1) Proceedings of the American Mathematical Society. ,vol. 18, pp. 1026- 1034 ,(1967) , 10.1090/S0002-9939-1967-0217586-3
John V. Ryff, Majorized Functions and Measures Indagationes Mathematicae (Proceedings). ,vol. 71, pp. 431- 437 ,(1968) , 10.1016/S1385-7258(68)50051-9