MICA—A toolbox for masked independent component analysis of fMRI data

作者: Tawfik Moher Alsady , Esther M. Blessing , Florian Beissner

DOI: 10.1002/HBM.23258

关键词:

摘要: Independent component analysis (ICA) is a widely used technique for investigating functional connectivity (fc) in magnetic resonance imaging data. Masked independent (mICA), that is, ICA restricted to defined region of interest, has been shown detect local fc networks particular brain regions, including the cerebellum, brainstem, posterior cingulate cortex, operculo-insular hippocampus, and spinal cord. Here, we present mICA toolbox, an open-source GUI toolbox based on FSL command line tools performs related analyses integrated way. Functions include automated mask generation from atlases, essential preprocessing, mICA-based parcellation, back-reconstruction whole-brain ones, reproducibility analysis. Automated slice-wise calculation cropping are additional functions reduce computational time memory requirements large analyses. To validate our tested these different using resting-state task-based data Human Connectome Project. In detected six together with their counterparts, closely replicating previous results. MICA-based parcellation hippocampus showed longitudinally discrete configuration greater heterogeneity anterior consistent animal human literature. Finally, brainstem motor sensory nuclei involved task tongue movement, thereby extending earlier Hum Brain Mapp 37:3544-3556, 2016. © 2016 Wiley Periodicals, Inc.

参考文章(54)
K. M. Igelstrom, T. W. Webb, M. S. A. Graziano, Neural Processes in the Human Temporoparietal Cortex Separated by Localized Independent Component Analysis The Journal of Neuroscience. ,vol. 35, pp. 9432- 9445 ,(2015) , 10.1523/JNEUROSCI.0551-15.2015
Danilo Bzdok, Angela R. Laird, Karl Zilles, Peter T. Fox, Simon B. Eickhoff, An Investigation of the Structural, Connectional, and Functional Subspecialization in the Human Amygdala Human Brain Mapping. ,vol. 34, pp. 3247- 3266 ,(2013) , 10.1002/HBM.22138
A.T. Baria, A. Mansour, L. Huang, M.N. Baliki, G.A. Cecchi, M.M. Mesulam, A.V. Apkarian, Linking human brain local activity fluctuations to structural and functional network architectures NeuroImage. ,vol. 73, pp. 144- 155 ,(2013) , 10.1016/J.NEUROIMAGE.2013.01.072
Florian Beissner, Ralf Deichmann, Simon Baudrexel, fMRI of the brainstem using dual-echo EPI NeuroImage. ,vol. 55, pp. 1593- 1599 ,(2011) , 10.1016/J.NEUROIMAGE.2011.01.042
Vitaly I. Dobromyslin, David H. Salat, Catherine B. Fortier, Elizabeth C. Leritz, Christian F. Beckmann, William P. Milberg, Regina E. McGlinchey, Distinct functional networks within the cerebellum and their relation to cortical systems assessed with independent component analysis. NeuroImage. ,vol. 60, pp. 2073- 2085 ,(2012) , 10.1016/J.NEUROIMAGE.2012.01.139
Matthew F. Glasser, Stamatios N. Sotiropoulos, J. Anthony Wilson, Timothy S. Coalson, Bruce Fischl, Jesper L. Andersson, Junqian Xu, Saad Jbabdi, Matthew Webster, Jonathan R. Polimeni, David C. Van Essen, Mark Jenkinson, The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. ,vol. 80, pp. 105- 124 ,(2013) , 10.1016/J.NEUROIMAGE.2013.04.127
V.D. Calhoun, T. Adali, G.D. Pearlson, J.J. Pekar, A method for making group inferences from functional MRI data using independent component analysis Human Brain Mapping. ,vol. 14, pp. 140- 151 ,(2001) , 10.1002/HBM.1048
Florian Beissner, Andy Schumann, Franziska Brunn, Daniela Eisenträger, Karl-Jürgen Bär, Advances in functional magnetic resonance imaging of the human brainstem NeuroImage. ,vol. 86, pp. 91- 98 ,(2014) , 10.1016/J.NEUROIMAGE.2013.07.081
R. Leech, R. Braga, D. J. Sharp, Echoes of the Brain within the Posterior Cingulate Cortex The Journal of Neuroscience. ,vol. 32, pp. 215- 222 ,(2012) , 10.1523/JNEUROSCI.3689-11.2012
Fabrizio Esposito, Tommaso Scarabino, Aapo Hyvarinen, Johan Himberg, Elia Formisano, Silvia Comani, Gioacchino Tedeschi, Rainer Goebel, Erich Seifritz, Francesco Di Salle, Independent component analysis of fMRI group studies by self-organizing clustering NeuroImage. ,vol. 25, pp. 193- 205 ,(2005) , 10.1016/J.NEUROIMAGE.2004.10.042