Kolmogorov and Linear Widths on Generalized Besov Classes in the Monte Carlo Setting

作者: Liqin Duan , Peixin Ye

DOI: 10.1007/978-3-642-24999-0_10

关键词:

摘要: In this paper, we studied the Kolmogorov and linear widths on generalized Besov classes \(B^\Omega_{p,\theta}\) in norm of L q Monte Carlo setting. Applying discretization technique some properties pseudo-s-scale, determined exact asymptotic orders for certain values parameters p, q, θ.

参考文章(20)
Klaus-Dieter Bierstedt, Functional analysis : proceedings of the Essen conference Dekker. ,(1994)
A. S. Romanyuk, LINEAR WIDTHS OF THE BESOV CLASSES OF PERIODIC FUNCTIONS OF MANY VARIABLES. II Ukrainian Mathematical Journal. ,vol. 53, pp. 744- 761 ,(2001) , 10.1023/A:1013356019431
Fang Gensun, Ye Peixin, Integration error for multivariate functions from anisotropic classes Journal of Complexity. ,vol. 19, pp. 610- 627 ,(2003) , 10.1016/S0885-064X(03)00012-8
O. V. Fedunyk, Linear widths of the classes B p,θ Ω of periodic functions of many variables in the space L q Ukrainian Mathematical Journal. ,vol. 58, pp. 103- 117 ,(2006) , 10.1007/S11253-006-0053-1
Peter Mathé, Random approximation of Sobolev embeddings Journal of Complexity. ,vol. 7, pp. 261- 281 ,(1991) , 10.1016/0885-064X(91)90036-W
GenSun Fang, LiQin Duan, The information-based complexity of approximation problem by adaptive Monte Carlo methods Science in China Series A: Mathematics. ,vol. 51, pp. 1679- 1689 ,(2008) , 10.1007/S11425-008-0008-0