Background subtraction for vehicle detection

作者: Arun Varghese , G. Sreelekha

DOI: 10.1109/GCCT.2015.7342688

关键词:

摘要: We propose a background subtraction method for segmenting vehicles from in video sequence. Our can be considered as hybrid of two existing methods. The is modelled per-pixel with collection pixel values. foreground/background decision based on whether the current value finds match samples model. matching model are adapted towards learning parameter. Evaluation tests public CDnet dataset shows good results highway scenario.

参考文章(7)
Nir Friedman, Stuart Russell, Image segmentation in video sequences: a probabilistic approach uncertainty in artificial intelligence. pp. 175- 181 ,(1997)
Nil Goyette, Pierre-Marc Jodoin, Fatih Porikli, Janusz Konrad, Prakash Ishwar, None, A novel video dataset for change detection benchmarking. IEEE Transactions on Image Processing. ,vol. 23, pp. 4663- 4679 ,(2014) , 10.1109/TIP.2014.2346013
Sebastian Brutzer, Benjamin Hoferlin, Gunther Heidemann, Evaluation of background subtraction techniques for video surveillance CVPR 2011. pp. 1937- 1944 ,(2011) , 10.1109/CVPR.2011.5995508
Surendra Gupte, Osama Masoud, Robert FK Martin, Nikolaos P Papanikolopoulos, None, Detection and classification of vehicles IEEE Transactions on Intelligent Transportation Systems. ,vol. 3, pp. 37- 47 ,(2002) , 10.1109/6979.994794
A. Elgammal, R. Duraiswami, D. Harwood, L.S. Davis, Background and foreground modeling using nonparametric kernel density estimation for visual surveillance Proceedings of the IEEE. ,vol. 90, pp. 1151- 1163 ,(2002) , 10.1109/JPROC.2002.801448
O Barnich, M Van Droogenbroeck, ViBe: A Universal Background Subtraction Algorithm for Video Sequences IEEE Transactions on Image Processing. ,vol. 20, pp. 1709- 1724 ,(2011) , 10.1109/TIP.2010.2101613
C.R. Wren, A. Azarbayejani, T. Darrell, A.P. Pentland, Pfinder: real-time tracking of the human body IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 19, pp. 780- 785 ,(1997) , 10.1109/34.598236