Magnetically-guided assembly of magnetic sugar particles for biodegradable scaffolds

作者: Fumihito Arai , Chengzhi Hu , Toshio Fukuda , Makoto Negoro , Carlos Tercero

DOI:

关键词:

摘要: Recent advances to develop scaffolds with controlled pore layout and porosity have great significance in tissue engineering for providing optimal cultivation conditions. Porogen leaching has been commonly used control size, structure the scaffold fabrication. This paper reports a magnetic steering method controlling sugar particles as porogens fabrication of sheet-like scaffold. A patterning device is utilized align on desired positions PVA introduced improve pores. After Poly(L-lactide-co-e-caprolactone) (PLCL) casting removal template, spherical pores are generated inside The surface inner morphologies evaluated aid optical microscope scanning electron microscope, respectively. results show controllable diameters ranges 150μm 200μm appropriate interconnection pores, elegant wall morphology high achieved small-size size 8mm width 10mm length.

参考文章(12)
Jeffrey T. Borenstein, H. Terai, Kevin R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Microfabrication Technology for Vascularized Tissue Engineering Biomedical Microdevices. ,vol. 4, pp. 167- 175 ,(2002) , 10.1023/A:1016040212127
Ligia L. Fernandes, Cristiane X. Resende, Débora S. Tavares, Gloria A. Soares, Letícia O. Castro, Jose M. Granjeiro, Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering Polimeros-ciencia E Tecnologia. ,vol. 21, pp. 1- 6 ,(2011) , 10.1590/S0104-14282011005000008
R. Izquierdo, N. Garcia-Giralt, M.T. Rodriguez, E. Cáceres, S.J. García, J.L. Gómez Ribelles, M. Monleón, Joan C. Monllau, J. Suay, Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering. Journal of Biomedical Materials Research Part A. ,vol. 85, pp. 25- 35 ,(2008) , 10.1002/JBM.A.31396
L. Draghi, S. Resta, M. G. Pirozzolo, M. C. Tanzi, Microspheres leaching for scaffold porosity control. Journal of Materials Science: Materials in Medicine. ,vol. 16, pp. 1093- 1097 ,(2005) , 10.1007/S10856-005-4711-X
Peter X. Ma, Ji-Won Choi, Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network Tissue Engineering. ,vol. 7, pp. 23- 33 ,(2001) , 10.1089/107632701300003269
Tomoyuki Uchida, Seiichi Ikeda, Hiroyuki Oura, Mika Tada, Takuma Nakano, Toshio Fukuda, Takehisa Matsuda, Makoto Negoro, Fumihito Arai, Development of biodegradable scaffolds based on patient-specific arterial configuration Journal of Biotechnology. ,vol. 133, pp. 213- 218 ,(2008) , 10.1016/J.JBIOTEC.2007.08.017
L D Wright, R T Young, T Andric, J W Freeman, Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Biomedical Materials. ,vol. 5, pp. 055006- ,(2010) , 10.1088/1748-6041/5/5/055006
Alisa Morss Clyne, Thermal Processing of Tissue Engineering Scaffolds Journal of Heat Transfer-transactions of The Asme. ,vol. 133, pp. 034001- ,(2011) , 10.1115/1.4002464
Jin Gao, Peter M. Crapo, Yadong Wang, Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering. Tissue Engineering. ,vol. 12, pp. 917- 925 ,(2006) , 10.1089/TEN.2006.12.917
Shoufeng Yang, Kah-Fai Leong, Zhaohui Du, Chee-Kai Chua, The Design of Scaffolds for Use in Tissue Engineering. Part I. Traditional Factors Tissue Engineering. ,vol. 7, pp. 679- 689 ,(2001) , 10.1089/107632701753337645