The Lelek fan and the Poulsen simplex as Fraïssé limits

作者: Wiesław Kubiś , Aleksandra Kwiatkowska

DOI: 10.1007/S13398-016-0339-6

关键词:

摘要: We describe the Lelek fan, a smooth fan whose set of end-points is dense, and Poulsen simplex, Choquet simplex extreme points as Fraisse limits in certain natural categories embeddings projections. As an application we give short proof their uniqueness, universality, almost homogeneity. further show that for every two countable dense subsets there exists auto-homeomorphism mapping one onto other. This improves result Kawamura, Oversteegen, Tymchatyn from 1996.

参考文章(17)
Lex G. Oversteegen, Kazuhiro Kawamura, E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces Fundamenta Mathematicae. ,vol. 150, pp. 97- 112 ,(1996)
Carl Eberhart, A note on smooth fans Colloquium Mathematicum. ,vol. 20, pp. 89- 90 ,(1969) , 10.4064/CM-20-1-89-90
A. Lelek, On plane dendroids and their end points in the classical sense Fundamenta Mathematicae. ,vol. 49, pp. 301- 319 ,(1961) , 10.4064/FM-49-3-301-319
Trevor Irwin, Sławomir Solecki, Projective Fraïssé limits and the pseudo-arc Transactions of the American Mathematical Society. ,vol. 358, pp. 3077- 3096 ,(2006) , 10.1090/S0002-9947-06-03928-6
Wiesław Kubiś, Metric-enriched categories and approximate Fra\"{i}ss\'{e} limits arXiv: Category Theory. ,(2012)
ITAÏ BEN YAACOV, FRAÏSSÉ LIMITS OF METRIC STRUCTURES Journal of Symbolic Logic. ,vol. 80, pp. 100- 115 ,(2015) , 10.1017/JSL.2014.71
Witold D. Bula, Lex G. Oversteegen, A characterization of smooth Cantor bouquets Proceedings of the American Mathematical Society. ,vol. 108, pp. 529- 534 ,(1990) , 10.1090/S0002-9939-1990-0991691-9
A. J. Lazar, J. Lindenstrauss, Banach spaces whose duals are L1 spaces and their representing matrices Acta Mathematica. ,vol. 126, pp. 165- 193 ,(1971) , 10.1007/BF02392030