Calibrating Margin-Based Classifier Scores into Polychotomous Probabilities

作者: Martin Gebel , Claus Weihs

DOI: 10.1007/978-3-540-78246-9_4

关键词:

摘要: Margin-based classifiers like the SVM and ANN have two drawbacks. They are only directly applicable for two-class problems they output scores which do not reflect assessment uncertainty. K-class probabilities usually generated by using a reduction to binary tasks, univariate calibration further application of pairwise coupling algorithm. This paper presents an alternative with usage Dirichlet distribution.

参考文章(7)
Martin Gebel, Claus Weihs, Calibrating Classifier Scores into Probabilities GfKl. pp. 141- 148 ,(2007) , 10.1007/978-3-540-70981-7_17
J.A.K. Suykens, J. Vandewalle, Least Squares Support Vector Machine Classifiers Neural Processing Letters. ,vol. 9, pp. 293- 300 ,(1999) , 10.1023/A:1018628609742
Morris H. DeGroot, Stephen E. Fienberg, The Comparison and Evaluation of Forecasters. The Statistician. ,vol. 32, pp. 12- 22 ,(1983) , 10.2307/2987588
Trevor Hastie, Robert Tibshirani, Classification by pairwise coupling Annals of Statistics. ,vol. 26, pp. 451- 471 ,(1998) , 10.1214/AOS/1028144844
Reducing multiclass to binary: a unifying approach for margin classifiers Journal of Machine Learning Research. ,vol. 1, pp. 113- 141 ,(2001) , 10.1162/15324430152733133
Reinhold Decker, Hans J. Lenz, Advances In Data Analysis ,(2007)