Reflection and transmission coefficients for transition layers

作者: Vlastislav Červený , J. Vaněk

DOI: 10.1007/BF01613709

关键词:

摘要: Formulae are derived for the reflection and transmission coeficients of plane elastic waves a transition layer. Haskell's technique so-called delta matrices[5, 7] used this purpose. No problems encountered in deriving reflections coefficients from matrices[3]. However, some cases matrices do not guarantee accuracy required. For reason attention is mainly devoted to matrices. In use made fact that some3×3 subdeterminants squares the3×3

参考文章(10)
Harold Jeffreys, Bertha Swirles, Philip M. Morse, Methods of Mathematical Physics ,(1956)
L. Knopoff, A matrix method for elastic wave problems Bulletin of the Seismological Society of America. ,vol. 54, pp. 431- 438 ,(1964)
E. C. Pestel, E. F. Kurtz, F. A. Leckie, Matrix methods in elastomechanics ,(1963)
William T. Thomson, Transmission of Elastic Waves through a Stratified Solid Medium Journal of Applied Physics. ,vol. 21, pp. 89- 93 ,(1950) , 10.1063/1.1699629
N. A. Haskell, The Dispersion of Surface Waves on Multilayered Media Bulletin of the Seismological Society of America. ,vol. 43, pp. 17- 34 ,(1953) , 10.1029/SP030P0086
Vlastislav Červený, Theory of Seismic Head Waves ,(1971)
T. H. Watson, A NOTE ON FAST COMPUTATION OF RAYLEIGH WAVE DISPERSION IN THE MULTILAYERED ELASTIC HALF-SPACE Bulletin of the Seismological Society of America. ,vol. 60, pp. 161- 166 ,(1970)
F.A. SCHWAB, L. KNOPOFF, Fast Surface Wave and Free Mode Computations Methods in Computational Physics: Advances in Research and Applications. ,vol. 11, pp. 87- 180 ,(1972) , 10.1016/B978-0-12-460811-5.50008-8
John W. Dunkin, Computation of modal solutions in layered, elastic media at high frequencies Bulletin of the Seismological Society of America. ,vol. 55, pp. 335- 358 ,(1965)
Vlastislav Cerveny, Ravi Ravindra, Theory of Seismic Head Waves University of Toronto Press. ,(1971) , 10.3138/9781442652668