Input Decimation Ensembles: Decorrelation through Dimensionality Reduction

作者: Nikunj C. Oza , Kagan Tumer

DOI: 10.1007/3-540-48219-9_24

关键词:

摘要: … Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many machine learning problems [4, 16]. However, the extent of …

参考文章(18)
David H. Wolpert, Original Contribution: Stacked generalization Neural Networks. ,vol. 5, pp. 241- 259 ,(1992) , 10.1016/S0893-6080(05)80023-1
Stephen D. Bay, Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets international conference on machine learning. pp. 37- 45 ,(1998)
Peter Norwig, Kagan Tumer, Nikunj C. Oza, Dimensionality Reduction Through Classifier Ensembles ,(1999)
Michael J. Pazzani, Christopher John Merz, Classification and regression by combining models University of California, Irvine. ,(1998)
Zijian Zheng, Geoffrey I. Webb, Stochastic Attribute Selection Committees australian joint conference on artificial intelligence. pp. 321- 332 ,(1998) , 10.1007/BFB0095063
K. Turner, N.C. Oza, Decimated input ensembles for improved generalization international joint conference on neural network. ,vol. 5, pp. 3069- 3074 ,(1999) , 10.1109/IJCNN.1999.836048
T. G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-correcting output codes Journal of Artificial Intelligence Research. ,vol. 2, pp. 263- 286 ,(1994) , 10.1613/JAIR.105
Michael D. Richard, Richard P. Lippmann, Neural Network Classifiers Estimate Bayesian a posteriori Probabilities. Neural Computation. ,vol. 3, pp. 461- 483 ,(1991) , 10.1162/NECO.1991.3.4.461