Local a posteriori error estimators for variational inequalities

作者: Mark Ainsworth , J. Tinsley Oden , C. Y. Lee

DOI: 10.1002/NUM.1690090104

关键词:

摘要: Local a posteriori error estimators for finite element approximation of variational inequalities are derived. These shown to provide upper bounds on the discretization error. Numerical examples given illustrating theoretical results. © 1993 John Wiley & Sons, Inc.

参考文章(8)
J Haslinger, Jindřich Nečas, J Lovíšek, Ivan Hlaváček, Solution of Variational Inequalities in Mechanics ,(1988)
David Kinderlehrer, Guido Stampacchia, An introduction to variational inequalities and their applications ,(1980)
Peter Percell, Mary Fanett Wheeler, A Local Residual Finite Element Procedure for Elliptic Equations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 705- 714 ,(1978) , 10.1137/0715047
R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations Mathematics of Computation. ,vol. 44, pp. 283- 301 ,(1985) , 10.1090/S0025-5718-1985-0777265-X
Mark Ainsworth, J. Tinsley Oden, A unified approach to a posteriori error estimation using element residual methods Numerische Mathematik. ,vol. 65, pp. 23- 50 ,(1993) , 10.1007/BF01385738
J.T. Oden, L. Demkowicz, W. Rachowicz, T.A. Westermann, Toward a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation Computer Methods in Applied Mechanics and Engineering. ,vol. 77, pp. 113- 180 ,(1989) , 10.1016/0045-7825(89)90130-8
J.T. Oden, N. Kikuchi, Theory of variational inequalities with applications to problems of flow through porous media International Journal of Engineering Science. ,vol. 18, pp. 1173- 1284 ,(1980) , 10.1016/0020-7225(80)90111-1
I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek, Solution of Variational Inequalities in Mechanics Applied Mathematical Sciences. ,(1988) , 10.1007/978-1-4612-1048-1