Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case

作者: Thilo Penzl

DOI: 10.1016/S0167-6911(00)00010-4

关键词:

摘要: Abstract We present two new bounds for the eigenvalues of solutions to a class continuous- and discrete-time Lyapunov equations. These hold equations with symmetric coefficient matrices right-hand side low rank. They reflect fast decay nonincreasingly ordered solution matrix.

参考文章(19)
A. C. M. Ran, M. A. Kaashoek, J. H. van Schuppen, Signal processing, scattering and operator theory, and numerical methods Birkhäuser. ,(1990)
Franklin F. Kuo, Network Analysis and Synthesis ,(1962)
Thilo Penzl, A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations SIAM Journal on Scientific Computing. ,vol. 21, pp. 1401- 1418 ,(1999) , 10.1137/S1064827598347666
J. Snyders, M. Zakai, On Nonnegative Solutions of the Equation $AD + DA' = - C$ SIAM Journal on Applied Mathematics. ,vol. 18, pp. 704- 714 ,(1970) , 10.1137/0118063
T. Mori, N. Fukuma, M. Kuwahara, Explicit solution and eigenvalue bounds in the Lyapunov matrix equation IEEE Transactions on Automatic Control. ,vol. 31, pp. 656- 658 ,(1986) , 10.1109/TAC.1986.1104369
Gene H. Golub, Charles F. Van Loan, Matrix computations (3rd ed.) Johns Hopkins University Press. ,(1996)
D.Y. Hu, L. Reichel, Krylov-subspace methods for the Sylvester equation Linear Algebra and its Applications. ,vol. 172, pp. 283- 313 ,(1992) , 10.1016/0024-3795(92)90031-5
A.Scottedward Hodel, Bruce Tenison, Kameshwar R. Poolla, NUMERICAL SOLUTION OF THE LYAPUNOV EQUATION BY APPROXIMATE POWER ITERATION Linear Algebra and its Applications. ,vol. 236, pp. 205- 230 ,(1996) , 10.1016/0024-3795(94)00155-3
Imad M. Jaimoukha, Ebrahim M. Kasenally, Krylov subspace methods for solving large Lyapunov equations SIAM Journal on Numerical Analysis. ,vol. 31, pp. 227- 251 ,(1994) , 10.1137/0731012