Quantum mechanical streamlines. I. Square potential barrier

作者: Joseph O. Hirschfelder , Albert C. Christoph , William E. Palke

DOI: 10.1063/1.1681899

关键词:

摘要: Exact numerical calculations are made for the scattering of quantum mechanical particles from a square two‐dimensional potential barrier. This treatment is an exact analog both frustrated total reflection perpendicularly polarized light and longitudinal Goos‐Hanchen shift. Quantum streamlines (which analogous to either classical trajectories or optical rays) plotted. These smooth, continuous, have continuous first derivatives even through classically forbidden region. The form quantized vortices surrounding each nodal points result interference between incident reflected waves). Similar occur in reactive collisions H + H2 (McCullough Wyatt; Kuppermann, Adams, Truhlar) undoubtedly play important role molecular collision dynamics. theory these given companion paper. A comparison our stationary phase appro...

参考文章(56)
Richard Courant, K. O. Friedrichs, Supersonic flow and shock waves ,(1948)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
Max Born, Emil Wolf, Principles of Optics ,(1959)
Bernard D. Seckler, Joseph B. Keller, Geometrical Theory of Diffraction in Inhomogeneous Media The Journal of the Acoustical Society of America. ,vol. 31, pp. 192- 205 ,(1959) , 10.1121/1.1907692
CLAUDE GARROD, Hamiltonian Path-Integral Methods Reviews of Modern Physics. ,vol. 38, pp. 483- 494 ,(1966) , 10.1103/REVMODPHYS.38.483
Ralph Schiller, QUASI-CLASSICAL TRANSFORMATION THEORY Physical Review. ,vol. 125, pp. 1109- 1115 ,(1962) , 10.1103/PHYSREV.125.1109
A.F. Turner, Some current developments in multilayer optical films Journal De Physique Et Le Radium. ,vol. 11, pp. 444- 460 ,(1950) , 10.1051/JPHYSRAD:01950001107044400
G. J. Troup, J. L. A. Francey, R. G. Turner, A. Tirkel, Photon Mass and New Experimental Results on Longitudinal Displacements of Laser Beams near Total Reflection Physical Review Letters. ,vol. 28, pp. 1540- 1540 ,(1972) , 10.1103/PHYSREVLETT.28.1540