Estimating standard errors for importance sampling estimators with multiple Markov chains

作者: James M. Flegal , Aixin Tan , Vivekananda Roy

DOI:

关键词:

摘要: The naive importance sampling estimator, based on samples from a single density, can be numerically unstable. Instead, we consider generalized estimators where more than one probability distribution are combined. We study this problem in the Markov chain Monte Carlo context, independent replaced with samples. If chains converge to their respective target distributions at polynomial rate, then under two finite moment conditions, show central limit theorem holds for estimators. Further, develop an easy implement method calculate valid asymptotic standard errors batch means. also provide means estimator calculating asymptotically of Geyer(1994) reverse logistic estimator. illustrate using Bayesian variable selection procedure linear regression. In particular, is used perform empirical Bayes and obtain high-dimensional setting current methods not applicable.

参考文章(39)
Vivekananda Roy, Evangelos Evangelou, Zhengyuan Zhu, Efficient estimation and prediction for the Bayesian binary spatial model with flexible link functions Biometrics. ,vol. 72, pp. 289- 298 ,(2016) , 10.1111/BIOM.12371
Iain M. Johnstone, Bernard W. Silverman, Empirical Bayes selection of wavelet thresholds Annals of Statistics. ,vol. 33, pp. 1700- 1752 ,(2005) , 10.1214/009053605000000345
Brian G. Osborne, Thomas Fearn, Andrew R. Miller, Stuart Douglas, Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs Journal of the Science of Food and Agriculture. ,vol. 35, pp. 99- 105 ,(1984) , 10.1002/JSFA.2740350116
Persi Diaconis, Susan Holmes, Gray codes for randomization procedures Statistics and Computing. ,vol. 4, pp. 287- 302 ,(1994) , 10.1007/BF00156752
K. L. Mengersen, R. L. Tweedie, Rates of convergence of the Hastings and Metropolis algorithms Annals of Statistics. ,vol. 24, pp. 101- 121 ,(1996) , 10.1214/AOS/1033066201
Aixin Tan, James P. Hobert, Block Gibbs Sampling for Bayesian Random Effects Models With Improper Priors: Convergence and Regeneration Journal of Computational and Graphical Statistics. ,vol. 18, pp. 861- 878 ,(2009) , 10.1198/JCGS.2009.08153
Vivekananda Roy, Efficient estimation of the link function parameter in a robust Bayesian binary regression model Computational Statistics & Data Analysis. ,vol. 73, pp. 87- 102 ,(2014) , 10.1016/J.CSDA.2013.11.013
Richard L. Tweedie, Sean Meyn, Markov Chains and Stochastic Stability ,(1993)
P. J Brown, T Fearn, M Vannucci, Bayesian wavelet regression on curves with application to a spectroscopic calibration problem Journal of the American Statistical Association. ,vol. 96, pp. 398- 408 ,(2001) , 10.1198/016214501753168118
T. J. Mitchell, J. J. Beauchamp, Bayesian Variable Selection in Linear Regression Journal of the American Statistical Association. ,vol. 83, pp. 1023- 1032 ,(1988) , 10.1080/01621459.1988.10478694