A Chromatic Metric on Graphs

作者: Gerhard Benadé

DOI: 10.1007/978-0-8176-4789-6_13

关键词:

摘要: In this chapter, we introduce the concept of relatedness graphs, based upon generalized chromatic number. This allows definition a graph metric. It is proved that distance between any two graphs at most three.

参考文章(9)
Jason I. Brown, Derek G. Corneil, On generalized graph colorings Journal of Graph Theory. ,vol. 11, pp. 87- 99 ,(1987) , 10.1002/JGT.3190110113
Izak Broere, Marietjie Frick, On the order of uniquely (k,m)-colourable graphs Discrete Mathematics. ,vol. 82, pp. 225- 232 ,(1990) , 10.1016/0012-365X(90)90200-2
B. Bollobás, A. G. Thomason, Uniquely Partitionable Graphs Journal of the London Mathematical Society. ,vol. s2-16, pp. 403- 410 ,(1977) , 10.1112/JLMS/S2-16.3.403
Izak Broere, Jason I. Brown, Gerhard Benadé, A Construction of Uniquely C4-free colourable Graphs Quaestiones Mathematicae. ,vol. 13, pp. 259- 264 ,(1990) , 10.1080/16073606.1990.9631616
Gary Chartrand, Dennis P. Geller, On uniquely colorable planar graphs Journal of Combinatorial Theory. ,vol. 6, pp. 271- 278 ,(1969) , 10.1016/S0021-9800(69)80087-6
D. Greenwell, L. Lovász, Applications of product colouring Acta Mathematica Hungarica. ,vol. 25, pp. 335- 340 ,(1974) , 10.1007/BF01886093
Jon Folkman, Graphs with Monochromatic Complete Subgraphs in Every Edge Coloring SIAM Journal on Applied Mathematics. ,vol. 18, pp. 19- 24 ,(1970) , 10.1137/0118004
C. M. Mynhardt, I. Broere, Generalized colorings of graphs Graph theory with applications to algorithms and computer science. pp. 583- 594 ,(1985)
Gary Chartrand, Linda Lesniak-Foster, Mehdi Behzad, E. Keith Lloyd, Graphs and Digraphs ,(1996)