A regression framework for learning ranking functions using relative relevance judgments

作者: Zhaohui Zheng , Keke Chen , Gordon Sun , Hongyuan Zha

DOI: 10.1145/1277741.1277792

关键词:

摘要: … Higher degree of relevance corresponds to higher value of the weight. We will use the symbol dcg to indicate the average of this value over a set of testing queries in our …

参考文章(22)
John Lafferty, Adam Berger, Statistical machine learning for information retrieval Carnegie Mellon University. ,(2001)
Fredric C. Gey, Aitao Chen, Jianzhang He, Jason Meggs, Logistic regression at TREC4 : Probabilistic retrieval from full text document collections text retrieval conference. pp. 65- 72 ,(1995)
William S. Cooper, Fredric C. Gey, Aitao Chen, Probabilistic Retrieval in the TIPSTER Collections: An Application of Staged Logistic Regression. text retrieval conference. pp. 73- 88 ,(1992)
Gerald Salton, Automatic text processing ,(1988)
Jerome H. Friedman, Greedy function approximation: A gradient boosting machine. Annals of Statistics. ,vol. 29, pp. 1189- 1232 ,(2001) , 10.1214/AOS/1013203451
David Cossock, Tong Zhang, Subset Ranking Using Regression Learning Theory. pp. 605- 619 ,(2006) , 10.1007/11776420_44
Norbert Fuhr, Optimum polynomial retrieval functions based on the probability ranking principle ACM Transactions on Information Systems. ,vol. 7, pp. 183- 204 ,(1989) , 10.1145/65943.65944
Hongyuan Zha, Zhaohui Zheng, Haoying Fu, Gordon Sun, Incorporating query difference for learning retrieval functions in world wide web search Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM '06. pp. 307- 316 ,(2006) , 10.1145/1183614.1183660
Howard Turtle, W. Bruce Croft, Inference Networks for Document Retrieval international acm sigir conference on research and development in information retrieval. ,vol. 51, pp. 1- 24 ,(1989) , 10.1145/3130348.3130361
Thorsten Joachims, Optimizing search engines using clickthrough data Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02. pp. 133- 142 ,(2002) , 10.1145/775047.775067