Momentum autocorrelation function of a classic diatomic chain

作者: Ming B. Yu

DOI: 10.1016/J.PHYSLETA.2016.08.042

关键词:

摘要: Abstract A classical harmonic diatomic chain is studied using the recurrence relations method. The momentum autocorrelation function results from contributions of acoustic and optical branches. By use convolution theorem, analytical expressions for are derived as even-order Bessel expansions with coefficients given in terms integrals elliptic functions real axis a contour parallel to imaginary axis, respectively.

参考文章(24)
Elliott Waters Montroll, I. P Ipatova, Alexei Alexei Maradudin, George Herbert Weiss, Theory of lattice dynamics in the harmonic approximation Published in <b>1971</b> in New York NY) by Academic press. ,(1971)
Paul F. Byrd, Morris D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists ,(2014)
L. S. Garc�a-Col�n, Poincaré cycles and ergodic behavior of a linear diatomic chain Journal of Statistical Physics. ,vol. 7, pp. 243- 258 ,(1973) , 10.1007/BF01030306
Elliott W. Montroll, Renfrey B. Potts, Effect of Defects on Lattice Vibrations Physical Review. ,vol. 100, pp. 525- 543 ,(1955) , 10.1103/PHYSREV.100.525
M Howard Lee, J Hong, J Florencio, Method of Recurrence Relations and Applications to Many-Body Systems Physica Scripta. ,vol. 1987, pp. 498- 504 ,(1987) , 10.1088/0031-8949/1987/T19B/029
Ronald F. Fox, Long-time tails and diffusion Physical Review A. ,vol. 27, pp. 3216- 3233 ,(1983) , 10.1103/PHYSREVA.27.3216
Robert J. Rubin, Velocity Autocorrelation Function of a Large Cluster of Particles in a One‐Dimensional Crystal The Journal of Chemical Physics. ,vol. 57, pp. 312- 316 ,(1972) , 10.1063/1.1677963
J. Florencio, M. Howard Lee, Exact time evolution of a classical harmonic-oscillator chain Physical Review A. ,vol. 31, pp. 3231- 3236 ,(1985) , 10.1103/PHYSREVA.31.3231