A new autoregressive time series model in exponential variables (NEAR(1))

作者: A. J. Lawrance , P. A. W. Lewis

DOI: 10.2307/1426975

关键词:

摘要: Abstract : A new time series model for exponential variables having first order autoregressive structure is presented. Unlike the recently studied standard in (EAR(1)), runs of constantly scaled values are avoidable, and two parameter allows some adjustment nonreversibility effects sample path behavior. The further developed by use cross-coupling antithetic ideas to allow negative dependency. Joint distributions autocorrelations investigated. transformed version has a uniform marginal distribution its correlation regression structures also obtained. Estimation aspects models briefly considered. (Author)

参考文章(7)
D. P. Gaver, P. A. W. Lewis, First Order Autoregressive Gamma Sequences and Point Processes. Advances in Applied Probability. ,vol. 12, pp. 727- 745 ,(1980) , 10.2307/1426429
P. A. P. MORAN, Testing for correlation between non-negative variates Biometrika. ,vol. 54, pp. 385- 394 ,(1967) , 10.1093/BIOMET/54.3-4.385
P. A. Jacobs, P. A. W. Lewis, A Mixed Autoregressive-Moving Average Exponential Sequence and Point Process (EARMA 1,1) Advances in Applied Probability. ,vol. 9, pp. 87- 104 ,(1977) , 10.2307/1425818
A. J. Lawrance, P. A. W. Lewis, Simulation of some autoregressive Markovian sequences of positive random variables winter simulation conference. pp. 301- 307 ,(1979) , 10.5555/800089.802884
A. Raftery, Un processus autorégressif à loi marginale exponentielle. Propriétés asymptotiques et estimation de maximum de vraisemblance Annales scientifiques de l'Université de Clermont. Mathématiques. ,vol. 69, pp. 149- 159 ,(1981)
A. J. Lawrance, P. A. W. Lewis, The Exponential Autoregressive-Moving Average Earma(P,Q) Process Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 42, pp. 150- 161 ,(1980) , 10.1111/J.2517-6161.1980.TB01112.X