A survey of the higher Stasheff-Tamari orders

作者: Jörg Rambau , Victor Reiner

DOI: 10.1007/978-3-0348-0405-9_18

关键词:

摘要: The Tamari lattice, thought as a poset on the set of triangulations convex polygon with n vertices, generalizes to higher Stasheff-Tamari orders cyclic d-dimensional polytope having vertices. This survey discusses what is known about these orders, and one would like know them.

参考文章(48)
J. M. Pallo, An algorithm to compute the Möbius function of the rotation lattice of binary trees Theoretical Informatics and Applications. ,vol. 27, pp. 341- 348 ,(1993) , 10.1051/ITA/1993270403411
Jim Stasheff, How I ‘met’ Dov Tamari Springer Basel. pp. 45- 63 ,(2012) , 10.1007/978-3-0348-0405-9_3
Jerusalem Combinatorics ’93 American Mathematical Society. ,vol. 178, ,(1994) , 10.1090/CONM/178
Martin Grötschel, László Lovász, Ronald L. Graham, Handbook of Combinatorics ,(1995)
Christos A. Athanasiadis, Zonotopal Subdivisions of Cyclic Zonotopes Geometriae Dedicata. ,vol. 86, pp. 37- 57 ,(2001) , 10.1023/A:1011942328698
Patrick Dehornoy, Tamari Lattices and the Symmetric Thompson Monoid arXiv: Combinatorics. pp. 211- 250 ,(2012) , 10.1007/978-3-0348-0405-9_11
Günter M. Ziegler, Lectures on Polytopes ,(1994)