Translation for finite W-algebras

作者: Simon M. Goodwin

DOI: 10.1090/S1088-4165-2011-00388-5

关键词:

摘要: A finite W -algebra U(g, e) is a certain finitely generated algebra that can be viewed as the enveloping of Slodowy slice to adjoint orbit nilpotent element e complex reductive Lie g. It possible give tensor product e)-module with dimensional U(g)-module structure e)-module; we refer such products translations. In this paper, present number fundamental properties these translations, which are expected importance in understanding representation theory e).

参考文章(25)
Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic Continuation of Generalized Jacquet Integrals Representations of Lie Groups, Kyoto, Hiroshima, 1986. pp. 123- 151 ,(1988) , 10.1016/B978-0-12-525100-6.50008-4
Thomas Emile Lynch, Generalized Whittaker vectors and representation theory. Massachusetts Institute of Technology. ,(1979)
Jens Carsten Jantzen, Representations of algebraic groups ,(1987)
A. Premet, Primitive ideals, non-restricted representations and finite W-algebras Moscow Mathematical Journal. ,vol. 7, pp. 743- 762 ,(2007) , 10.17323/1609-4514-2007-7-4-743-762
Wee Gan, Victor Ginzburg, Quantization of Slodowy slices International Mathematics Research Notices. ,vol. 2002, pp. 243- 255 ,(2002) , 10.1155/S107379280210609X
Ivan Losev, Quantized symplectic actions and W -algebras Journal of the American Mathematical Society. ,vol. 23, pp. 35- 59 ,(2010) , 10.1090/S0894-0347-09-00648-1
Jonathan Brundan, Simon M. Goodwin, Alexander Kleshchev, Highest Weight Theory for Finite W-Algebras International Mathematics Research Notices. ,vol. 2008, pp. 1- 53 ,(2008) , 10.1093/IMRN/RNN051
Alexander Premet, Enveloping algebras of Slodowy slices and the Joseph ideal Journal of the European Mathematical Society. ,vol. 9, pp. 487- 543 ,(2007) , 10.4171/JEMS/86