The generalized Jacobi equation

作者: Carmen Charles Chicone , Bahram Mashhoon

DOI: 10.1088/0264-9381/19/16/301

关键词:

摘要: The Jacobi equation in pseudo-Riemannian geometry determines the linearized geodesic flow. linearization ignores relative velocity of geodesics. generalized takes into account; that is, when geodesics are neighbouring but their is arbitrary corresponding deviation equation. Hamiltonian structure this nonlinear analysed paper. tidal accelerations for test particles field a plane gravitational wave and exterior rotating mass investigated. In latter case, existence an attractor uniform radial motion with speed 2−1/2c ≈ 0.7c pointed out. astrophysical implication result terminal relativistic jet briefly explored.

参考文章(14)
J. L. Synge, On the neighborhood of a geodesic in Riemannian space Duke Mathematical Journal. ,vol. 1, pp. 527- 537 ,(1935) , 10.1215/S0012-7094-35-00140-5
On the Geometry of Dynamics Philosophical Transactions of the Royal Society A. ,vol. 226, pp. 31- 106 ,(1927) , 10.1098/RSTA.1927.0002
R Kerner, R Colistete, R Colistete, J W van Holten, Relativistic epicycles: another approach to geodesic deviations Classical and Quantum Gravity. ,vol. 18, pp. 4725- 4742 ,(2001) , 10.1088/0264-9381/18/22/302
T. Levi-Civita, Sur l'�cart g�od�sique Mathematische Annalen. ,vol. 97, pp. 291- 320 ,(1927) , 10.1007/BF01447869
D. E. Hodgkinson, A modified equation of geodesic deviation General Relativity and Gravitation. ,vol. 3, pp. 351- 375 ,(1972) , 10.1007/BF00759173
Ignazio Ciufolini, Generalized geodesic deviation equation Physical Review D. ,vol. 34, pp. 1014- 1017 ,(1986) , 10.1103/PHYSREVD.34.1014
B. Mashhoon, J. C. McClune, Relativistic tidal impulse Monthly Notices of the Royal Astronomical Society. ,vol. 262, pp. 881- 888 ,(1993) , 10.1093/MNRAS/262.4.881
Ignazio Ciufolini, Marek Demianski, How to measure the curvature of space-time Physical Review D. ,vol. 34, pp. 1018- 1020 ,(1986) , 10.1103/PHYSREVD.34.1018
Wann‐Quan Li, Wei‐Tou Ni, Coupled inertial and gravitational effects in the proper reference frame of an accelerated, rotating observer Journal of Mathematical Physics. ,vol. 20, pp. 1473- 1480 ,(1979) , 10.1063/1.524203
B. Mashhoon, On tidal phenomena in a strong gravitational field The Astrophysical Journal. ,vol. 197, pp. 705- 716 ,(1975) , 10.1086/153560