Convolution in K’ {Mp}-Spaces

作者: A. Kamiński , J. Uryga

DOI: 10.1007/978-1-4613-1055-6_18

关键词:

摘要: I. M. Gelfand and G. E. Shilov introduced in [3] (see p. 78) spaces of generalized functions, dual to the K{Mp}defined by means an arbitrary non-decreasing sequence {Mp} functions Mp : ℝd → [1,∞], which are supposed be continuous on set S = Sp {x ∈ Mp(x) > ∞} (p N).

参考文章(9)
Jan Mikusiński, Roman Sikorski, Piotr Antosik, Theory of distributions : the sequential approach Elsevier Scientific Pub. [distributed by American Elsevier Pub., New York]. ,(1973)
Larry Kitchens, Charles Swartz, Convergence in the dual of certain $K{M_p}$-spaces Colloquium Mathematicum. ,vol. 30, pp. 149- 155 ,(1974) , 10.4064/CM-30-1-149-155
Andrzej Kamiński, On the Rényi theory of conditional probabilities Studia Mathematica. ,vol. 79, pp. 151- 191 ,(1984) , 10.4064/SM-79-2-151-191
J. Mikusiński, Sequential theory of the convolution of distributions Studia Mathematica. ,vol. 29, pp. 151- 160 ,(1968) , 10.4064/SM-29-2-151-160
Peter Dierolf, Jürgen Voigt, Convolution and $S'$-Convolution of Distributions Collectanea Mathematica. ,vol. 29, pp. 185- 196 ,(1978)
V. S. Vladimirov, Ludwig Streit, Equations of Mathematical Physics ,(1967)
S. Pilipović, On the Convolution in the Space of K′{Mp}-Type Mathematische Nachrichten. ,vol. 120, pp. 103- 112 ,(1985) , 10.1002/MANA.19851200110
Piotr Antosik, Theory of Distributions ,(1973)
Juan Horváth, Topological vector spaces and distributions Addison-Wesley Pub. Co.. ,(1966)