Interval-valued Fuzzy Sets in Soft Computing

作者: Humberto Bustince

DOI: 10.1080/18756891.2010.9727692

关键词:

摘要: In this work, we explain the reasons for which, some specific problems, interval valued fuzzy sets must be considered a basic component of Soft Computing

参考文章(61)
J. Sanz, A. Fernández, H. Bustince, F. Herrera, A First Study on the Use of Interval-Valued Fuzzy Sets with Genetic Tuning for Classification with Imbalanced Data-Sets hybrid artificial intelligence systems. pp. 581- 588 ,(2009) , 10.1007/978-3-642-02319-4_70
Enric Trillas, Sobre funciones de negación en la teoría de conjuntos difusos. Stochastica. ,vol. 3, pp. 47- 60 ,(1979)
Humberto Bustince, Javier Montero, Miguel Pagola, Edurne Barrenechea, Daniel Gomez, A Survey of Interval‐Valued Fuzzy Sets ohn Wiley & Sons. pp. 489- 515 ,(2008) , 10.1002/9780470724163.CH22
Andrzej Dziech, Marian B. Gorzałczany, Decision making in signal transmission problems with interval-valued fuzzy sets Fuzzy Sets and Systems. ,vol. 23, pp. 191- 203 ,(1987) , 10.1016/0165-0114(87)90058-3
Byung-In Choi, Frank Chung-Hoon Rhee, Interval type-2 fuzzy membership function generation methods for pattern recognition Information Sciences. ,vol. 179, pp. 2102- 2122 ,(2009) , 10.1016/J.INS.2008.04.009
Marian B. Gorzałczany, An interval-valued fuzzy inference method: some basic properties Fuzzy Sets and Systems. ,vol. 31, pp. 243- 251 ,(1989) , 10.1016/0165-0114(89)90006-7
I Burhan Türkşen, None, Type 2 representation and reasoning for CWW Fuzzy Sets and Systems. ,vol. 127, pp. 17- 36 ,(2002) , 10.1016/S0165-0114(01)00150-6
K.-U. Jahn, Intervall‐wertige Mengen Mathematische Nachrichten. ,vol. 68, pp. 115- 132 ,(1975) , 10.1002/MANA.19750680109