Putting p53 in Context

作者: Edward R. Kastenhuber , Scott W. Lowe

DOI: 10.1016/J.CELL.2017.08.028

关键词:

摘要: TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type …

参考文章(193)
David P. Lane, Chandra Verma, Cheok Chit Fang, The p53 inducing drug dosage may determine quiescence or senescence. Aging (Albany NY). ,vol. 2, pp. 748- 748 ,(2010) , 10.18632/AGING.100229
Adam R. Blanden, Xin Yu, Stewart N. Loh, Arnold J. Levine, Darren R. Carpizo, Reactivating mutant p53 using small molecules as zinc metallochaperones: awakening a sleeping giant in cancer. Drug Discovery Today. ,vol. 20, pp. 1391- 1397 ,(2015) , 10.1016/J.DRUDIS.2015.07.006
Laurie Jackson-Grusby, Caroline Beard, Richard Possemato, Matthew Tudor, Douglas Fambrough, Györgyi Csankovszki, Jessica Dausman, Peggy Lee, Christopher Wilson, Eric Lander, Rudolf Jaenisch, Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nature Genetics. ,vol. 27, pp. 31- 39 ,(2001) , 10.1038/83730
Dan A. Liebermann, Maryla Krajewska, Stanislaw Krajewski, Hong Gang Wang, Barbara Hoffman, John C. Reed, H. K. Lin, Toshiyuki Miyashita, Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo Oncogene. ,vol. 9, pp. 1799- 1805 ,(1994)
Sandra Morandell, Michael B. Yaffe, Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. Progress in Molecular Biology and Translational Science. ,vol. 110, pp. 289- 314 ,(2012) , 10.1016/B978-0-12-387665-2.00011-0
E. M. Alexandrova, A. R. Yallowitz, D. Li, S. Xu, R. Schulz, D. A. Proia, G. Lozano, M. Dobbelstein, U. M. Moll, Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment Nature. ,vol. 523, pp. 352- 356 ,(2015) , 10.1038/NATURE14430
Lei Duan, Ricardo E. Perez, Batzaya Davaadelger, Elena N. Dedkova, Lothar A. Blatter, Carl G. Maki, p53-regulated autophagy is controlled by glycolysis and determines cell fate. Oncotarget. ,vol. 6, pp. 23135- 23156 ,(2015) , 10.18632/ONCOTARGET.5218
Jiajun Zhu, Morgan A. Sammons, Greg Donahue, Zhixun Dou, Masoud Vedadi, Matthäus Getlik, Dalia Barsyte-Lovejoy, Rima Al-awar, Bryson W. Katona, Ali Shilatifard, Jing Huang, Xianxin Hua, Cheryl H. Arrowsmith, Shelley L. Berger, Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth Nature. ,vol. 525, pp. 206- 211 ,(2015) , 10.1038/NATURE15251
Bert Vogelstein, David Sidransky, Ruth W. Craig, Michael B. Kastan, Onyinye Onyekwere, Participation of p53 Protein in the Cellular Response to DNA Damage Cancer Research. ,vol. 51, pp. 6304- 6311 ,(1991)
Neil T. Pfister, Vitalay Fomin, Kausik Regunath, Jeffrey Y. Zhou, Wen Zhou, Laxmi Silwal-Pandit, William A. Freed-Pastor, Oleg Laptenko, Suat Peng Neo, Jill Bargonetti, Mainul Hoque, Bin Tian, Jayantha Gunaratne, Olav Engebraaten, James L. Manley, Anne-Lise Børresen-Dale, Paul M. Neilsen, Carol Prives, Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells Genes & Development. ,vol. 29, pp. 1298- 1315 ,(2015) , 10.1101/GAD.263202.115