Fractality in complex networks: Critical and supercritical skeletons

作者: J. S. Kim , K.-I. Goh , G. Salvi , E. Oh , B. Kahng

DOI: 10.1103/PHYSREVE.75.016110

关键词:

摘要: Fractal scaling\char22{}a power-law behavior of the number boxes needed to tile a given network with respect lateral size box\char22{}is studied. We introduce box-covering algorithm that is modified version original introduced by Song et al. [Nature (London) 433, 392 (2005)]; this enables easy implementation. networks are viewed as comprising skeleton and shortcuts. The skeleton, embedded underneath network, special type spanning tree based on edge betweenness centrality; it provides scaffold for fractality network. When regarded branching tree, exhibits plateau in mean function distance from root. For nonfractal networks, other hand, decays zero without forming plateau. Based these observations, we construct fractal model combining random local can be either critical or supercritical, depending small worldness constructed (supercritical) average vertices within box grows according (an exponential) form cluster-growing method. supercritical skeletons observed protein interaction World Wide Web, respectively. distribution masses, i.e., each box, follows power law ${P}_{m}(M)\ensuremath{\sim}{M}^{\ensuremath{-}\ensuremath{\eta}}$. exponent $\ensuremath{\eta}$ depends ${\ensuremath{\ell}}_{B}$. values ${\ensuremath{\ell}}_{B}$, equal degree $\ensuremath{\gamma}$ scale-free whereas approaches $\ensuremath{\tau}=\ensuremath{\gamma}∕(\ensuremath{\gamma}\ensuremath{-}1)$ ${\ensuremath{\ell}}_{B}$ increases, which cluster-size tree. Finally, study perimeter ${H}_{\ensuremath{\alpha}}$ $\ensuremath{\alpha}$, edges connected different $\ensuremath{\alpha}$ mass ${M}_{B,\ensuremath{\alpha}}$. It obtained over ${M}_{B}$ likely scale $⟨H({M}_{B})⟩\ensuremath{\sim}{M}_{B}$, irrespective

参考文章(34)
P L Leath, G R Reich, Scaling form for percolation cluster sizes and perimeters Journal of Physics C: Solid State Physics. ,vol. 11, pp. 4017- 4036 ,(1978) , 10.1088/0022-3719/11/19/013
M. Girvan, M. E. J. Newman, Community structure in social and biological networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 99, pp. 7821- 7826 ,(2002) , 10.1073/PNAS.122653799
Linton C. Freeman, A Set of Measures of Centrality Based on Betweenness Sociometry. ,vol. 40, pp. 35- 41 ,(1977) , 10.2307/3033543
Chaoming Song, Shlomo Havlin, Hernán A. Makse, Self-similarity of complex networks. Nature. ,vol. 433, pp. 392- 395 ,(2005) , 10.1038/NATURE03248
Cheol-Min Ghim, Kwang-Il Goh, Byungnam Kahng, Lethality and synthetic lethality in the genome-wide metabolic network of Escherichia coli Journal of Theoretical Biology. ,vol. 237, pp. 401- 411 ,(2005) , 10.1016/J.JTBI.2005.04.025
Marcel den Nijs, Real-space renormalization from a geometric fractal perspective Physica A-statistical Mechanics and Its Applications. ,vol. 251, pp. 52- 69 ,(1998) , 10.1016/S0378-4371(97)00594-3
Soon-Hyung Yook, Filippo Radicchi, Hildegard Meyer-Ortmanns, Self-similar scale-free networks and disassortativity. Physical Review E. ,vol. 72, pp. 045105- ,(2005) , 10.1103/PHYSREVE.72.045105
Albert-László Barabási, Réka Albert, Emergence of Scaling in Random Networks Science. ,vol. 286, pp. 509- 512 ,(1999) , 10.1126/SCIENCE.286.5439.509
K.-I. Goh, D.-S. Lee, B. Kahng, D. Kim, Sandpile on scale-free networks. Physical Review Letters. ,vol. 91, pp. 148701- ,(2003) , 10.1103/PHYSREVLETT.91.148701
Jing-Dong J. Han, Nicolas Bertin, Tong Hao, Debra S. Goldberg, Gabriel F. Berriz, Lan V. Zhang, Denis Dupuy, Albertha J. M. Walhout, Michael E. Cusick, Frederick P. Roth, Marc Vidal, Evidence for dynamically organized modularity in the yeast protein–protein interaction network Nature. ,vol. 430, pp. 88- 93 ,(2004) , 10.1038/NATURE02555