Reverse water gas shift reaction and CO2 mitigation: nanocrystalline MgO as a support for nickel based catalysts

作者: Atieh Ranjbar , Abdullah Irankhah , Seyed Foad Aghamiri

DOI: 10.1016/J.JECE.2018.07.032

关键词:

摘要: Abstract Effect of nickel loading in catalysts supported on nanocrystalline MgO prepared by surfactant assisted precipitation (M1) method were evaluated reverse water gas shift (RWGS) reaction. Due to high dispersion and basicity support 7% Ni showed highest CO2 conversion good CO selectivity. Increase higher than was favor methanation. The also ultrasonic (M2). 7Ni-M2 but lower selectivity comparison with 7Ni-M1. supports charactrized X-ray diffraction (XRD), N2 adsorption-desorption (BET), temperature programmed reduction (TPR) scanning electron microscopy (SEM) techniques. BET results revealed narrower pore size distribution smaller total volume for M2 catalyst. 7Ni-M1 great catalytic stability after 50 h stream at 600 °C. that increase H2/CO2 molar ratio enhanced the decreased

参考文章(45)
Maxime Lortie, Reverse Water Gas Shift Reaction over Supported Cu-Ni Nanoparticle Catalysts Université d'Ottawa / University of Ottawa. ,(2014) , 10.20381/RUOR-6537
Luhui Wang, Hui Liu, Ying Chen, Renkun Zhang, Shuqing Yang, K-Promoted Co–CeO2 Catalyst for the Reverse Water–Gas Shift Reaction Chemistry Letters. ,vol. 42, pp. 682- 683 ,(2013) , 10.1246/CL.130137
H. C. Wu, Y. C. Chang, J. H. Wu, J. H. Lin, I. K. Lin, C. S. Chen, Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2 catalysts: the influence of particle size on selectivity and reaction pathway Catalysis Science & Technology. ,vol. 5, pp. 4154- 4163 ,(2015) , 10.1039/C5CY00667H
Ching‐Shiun Chen, Wu‐Hsun Cheng, Shou‐Shiun Lin, Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst Catalysis Letters. ,vol. 68, pp. 45- 48 ,(2000) , 10.1023/A:1019071117449
F. Frusteri, F. Arena, G. Calogero, T. Torre, A. Parmaliana, Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane Catalysis Communications. ,vol. 2, pp. 49- 56 ,(2001) , 10.1016/S1566-7367(01)00008-5
D. J. Pettigrew, D. L. Trimm, N. W. Cant, The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina Catalysis Letters. ,vol. 28, pp. 313- 319 ,(1994) , 10.1007/BF00806061
Kazumasa Oshima, Tatsuya Shinagawa, Yukako Nogami, Ryo Manabe, Shuhei Ogo, Yasushi Sekine, Low temperature catalytic reverse water gas shift reaction assisted by an electric field Catalysis Today. ,vol. 232, pp. 27- 32 ,(2014) , 10.1016/J.CATTOD.2013.11.035
Makarand R. Gogate, Robert J. Davis, Comparative study of CO and CO2 hydrogenation over supported Rh–Fe catalysts Catalysis Communications. ,vol. 11, pp. 901- 906 ,(2010) , 10.1016/J.CATCOM.2010.03.020
Ching S. Chen, Jarrn H. Lin, Jiann H. You, Kuo H. Yang, Effects of potassium on Ni-K/Al2O3 catalysts in the synthesis of carbon nanofibers by catalytic hydrogenation of CO2. Journal of Physical Chemistry A. ,vol. 114, pp. 3773- 3781 ,(2010) , 10.1021/JP904434E