Carry-Free Radix-2 Subtractive Division Algorithm and Implementation of the Divider

作者: Jen-Shiun Chiang , Hung-Da Chung , Min-Show Min-Show

DOI: 10.6180/JASE.2000.3.4.03

关键词:

摘要: A carry-free subtractive division algorithm is proposed in this paper. In the conventional divider, adders are used to find both quotient bit and partial remainder. Carries usually generated addition operation, it may take time finish therefore, carry propagation delay a bottleneck of divider. paper, scheme by using signed representation represent During arithmetic special technique decide bit, new remainder can be found further table lookup-like method. The format converted on-the-fly conversion binary representation. Based on 32-b/32-b divider designed implemented, simulation shows that works well.

参考文章(13)
Tomas Lang, MiloTs Dragutin Ercegovac, Division and Square Root: Digit-Recurrence Algorithms and Implementations Kluwer Academic Publishers. ,(1994)
Ercegovac, Lang, On-the-Fly Conversion of Redundant into Conventional Representations IEEE Transactions on Computers. ,vol. 36, pp. 895- 897 ,(1987) , 10.1109/TC.1987.1676986
J. Cortadella, T. Lang, High-radix division and square-root with speculation IEEE Transactions on Computers. ,vol. 43, pp. 919- 931 ,(1994) , 10.1109/12.295854
D.E. Atkins, Higher-Radix Division Using Estimates of the Divisor and Partial Remainders IEEE Transactions on Computers. ,vol. C-17, pp. 925- 934 ,(1968) , 10.1109/TC.1968.226439
A. E. BASHAGHA, M. K. IBRAHIM, A new digit-serial divider architecture International Journal of Electronics. ,vol. 75, pp. 133- 140 ,(1993) , 10.1080/00207219308907094
Chin Tung, Signed-Digit Division Using Combinational Arithmetic Nets IEEE Transactions on Computers. ,vol. C-19, pp. 746- 748 ,(1970) , 10.1109/T-C.1970.223024
M.D. Ercegovac, T. Lang, Simple radix-4 division with operands scaling IEEE Transactions on Computers. ,vol. 39, pp. 1204- 1208 ,(1990) , 10.1109/12.57060
Chin Tung, A Division Algorithm for Signed-Digit Arithmetic IEEE Transactions on Computers. ,vol. C-17, pp. 887- 889 ,(1968) , 10.1109/TC.1968.229150
N. Burgess, A fast division algorithm for VLSI international conference on computer design. pp. 560- 563 ,(1991) , 10.1109/ICCD.1991.139973