Components of Springer fibers associated to closed orbits for the symmetric pairs (Sp(2n),Sp(2p)×Sp(2q)) and (SO(2n),GL(n)) I

作者: L. Barchini , R. Zierau

DOI: 10.1016/J.JPAA.2014.05.038

关键词:

摘要: Abstract This is the second of two articles that consider pairs complex reductive groups ( G , K ) = Sp 2 n p × q and SO GL components Springer fibers associated to closed K-orbits in flag variety G. In first an algorithm given compute any discrete series representation R ⁎ concretely describe corresponding component a fiber. These results are used here cycles representations. For each Harish-Chandra cell containing representation, particular identified for which structure sufficiently simple multiplicity cycle can be calculated. Coherent continuation then applied all representations such cell.

参考文章(22)
Dan Barbasch, David Vogan, Weyl Group Representations and Nilpotent Orbits Birkhäuser Boston. pp. 21- 33 ,(1983) , 10.1007/978-1-4684-6730-7_2
Tonny Albert Springer, Linear Algebraic Groups ,(1981)
Dan Ciubotaru, Kyo Nishiyama, Peter E. Trapa, Regular Orbits of Symmetric Subgroups on Partial Flag Varieties Representation Theory, Complex Analysis, and Integral Geometry. pp. 61- 86 ,(2012) , 10.1007/978-0-8176-4817-6_4
Jen-Tseh Chang, CHARACTERISTIC CYCLES OF HOLOMORPHIC DISCRETE SERIES Transactions of the American Mathematical Society. ,vol. 334, pp. 213- 227 ,(1992) , 10.1090/S0002-9947-1992-1087052-3
Peter E. Trapa, Symplectic and orthogonal Robinson–Schensted algorithms Journal of Algebra. ,vol. 286, pp. 386- 404 ,(2005) , 10.1016/J.JALGEBRA.2003.07.026
Peter E. Trapa, Richardson orbits for real classical groups Journal of Algebra. ,vol. 286, pp. 361- 385 ,(2005) , 10.1016/J.JALGEBRA.2003.07.027