Automatic target-shape recognition via deformable wavelet templates

作者: Jin Li , C.-C. Jay Kuo

DOI: 10.1117/12.241134

关键词:

摘要: A deformable wavelet template (DWT) is proposed for object shape description in this research. Wavelet templates offer not only the global information at lower scales but also local features higher differential scales. It provides a natural tool multiresolution representation and can be used conveniently hierarchical matching procedure. We first address three main processing steps DWT-based ATR system feature extraction. They are: (1) image preprocessing target extraction, (2) normalization (3) decomposition. Then, multiscale procedure discussed. The performance of algorithm demonstrated with extensive experimental results.

参考文章(7)
Charles K. Chui, An introduction to wavelets ,(1992)
Gilbert Strang, Wavelets and Dilation Equations: A Brief Introduction SIAM Review. ,vol. 31, pp. 614- 627 ,(1989) , 10.1137/1031128
Ingrid Daubechies, Ten Lectures on Wavelets ,(1992)
H. Kauppinen, T. Seppanen, M. Pietikainen, An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 17, pp. 201- 207 ,(1995) , 10.1109/34.368168
M. Antonini, M. Barlaud, P. Mathieu, I. Daubechies, Image coding using wavelet transform IEEE Transactions on Image Processing. ,vol. 1, pp. 205- 220 ,(1992) , 10.1109/83.136597
Rangachar Kasturi, Brian G. Schunck, Ramesh Jain, Machine Vision ,(1995)