A cut discontinuous Galerkin method for the Laplace–Beltrami operator

作者: Erik Burman , Peter Hansbo , Mats G. Larson , André Massing

DOI: 10.1093/IMANUM/DRV068

关键词:

摘要: We develop a discontinuous cut finite element method for the Laplace–Beltrami operator on hypersurface embedded in R. The is constructed by using piecewise linear el ...

参考文章(42)
Gerhard Dziuk, Finite Elements for the Beltrami operator on arbitrary surfaces Lecture Notes in Mathematics. pp. 142- 155 ,(1988) , 10.1007/BFB0082865
Qiuliang Wang, Jinru Chen, A new unfitted stabilized Nitsche's finite element method for Stokes interface problems Computers & Mathematics With Applications. ,vol. 70, pp. 820- 834 ,(2015) , 10.1016/J.CAMWA.2015.05.024
Peter Hansbo, Mats G. Larson, Sara Zahedi, Characteristic cut finite element methods for convection–diffusion problems on time dependent surfaces Computer Methods in Applied Mechanics and Engineering. ,vol. 293, pp. 431- 461 ,(2015) , 10.1016/J.CMA.2015.05.010
Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, André Massing, CutFEM: Discretizing geometry and partial differential equations International Journal for Numerical Methods in Engineering. ,vol. 104, pp. 472- 501 ,(2015) , 10.1002/NME.4823
F. Heimann, C. Engwer, O. Ippisch, P. Bastian, An unfitted interior penalty discontinuous Galerkin method for incompressible Navier–Stokes two‐phase flow International Journal for Numerical Methods in Fluids. ,vol. 71, pp. 269- 293 ,(2013) , 10.1002/FLD.3653
André Massing, Mats G. Larson, Anders Logg, Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D arXiv: Numerical Analysis. ,(2012)
Neil S Trudinger, David G Gilbarg, Elliptic Partial Differential Equations of Second Order ,(2018)
Klaus Deckelnick, Charles M. Elliott, Thomas Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations SIAM Journal on Numerical Analysis. ,vol. 52, pp. 2137- 2162 ,(2014) , 10.1137/130948641
Susanne C. Brenner, Poincaré-Friedrichs Inequalities for Piecewise H 1 Functions SIAM Journal on Numerical Analysis. ,vol. 41, pp. 306- 324 ,(2003) , 10.1137/S0036142902401311