Information-theoretic portfolio decision model for optimal flood management

作者: Matteo Convertino , Antonio Annis , Fernando Nardi

DOI: 10.1016/J.ENVSOFT.2019.06.013

关键词:

摘要: Abstract The increasing impact of flooding urges more effective flood management strategies to guarantee sustainable ecosystem development. Recent catastrophes underline the importance avoiding local management, but characterizing large scale basin wide approaches for systemic risk management. Here we introduce an information-theoretic Portfolio Decision Model (iPDM) optimization a value at by evaluating all potential mitigation plans. iPDM calculates predicted feasible combinations control structures (FCS) considering environmental, social and economical asset criteria. A multi-criteria decision analytical model evaluates benefits FCS portfolios weighted stakeholder preferences assets’ criteria as services. is based on maximum entropy (MaxEnt) that predicts susceptibility, floods exceedance probability distribution, its most important drivers. Information theoretic global sensitivity uncertainty analysis used select simplest accurate return period. stochastic algorithm optimizes constrained budget available provides Pareto frontiers optimal plans any level. solutions maximize diversity minimize criticality manifested scaling exponent distribution size links hydrogeomorphological patterns. proposed tested 17,000 km2 Tiber river in Italy. allows stakeholders identify basins comprehensive evaluation effects under future trajectories.

参考文章(91)
Vladimir I. Nikora, Charles P. Pearson, Ude Shankar, Scaling properties in landscape patterns: New Zealand experience Landscape Ecology. ,vol. 14, pp. 17- 33 ,(1999) , 10.1023/A:1008077914643
A. Speranza, M. Casaioli, G. Calenda, R. Mantovani, C. Cosentino, Flood Forecasting in the Tiber Catchment Area: a Methodological Analysis Annals of Geophysics. ,vol. 43, pp. 869- 888 ,(2000) , 10.4401/AG-3680
Matthew Wood, Daniel Kovacs, Ann Bostrom, Todd Bridges, Igor Linkov, Flood Risk Management: US Army Corps of Engineers and Layperson Perceptions Risk Analysis. ,vol. 32, pp. 1349- 1368 ,(2012) , 10.1111/J.1539-6924.2012.01832.X
J. Park, T. P. Seager, P. S. C. Rao, M. Convertino, I. Linkov, Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems Risk Analysis. ,vol. 33, pp. 356- 367 ,(2013) , 10.1111/J.1539-6924.2012.01885.X
Caterina Samela, Salvatore Manfreda, Francesco De Paola, Maurizio Giugni, Aurelia Sole, Mauro Fiorentino, DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa Journal of Hydrologic Engineering. ,vol. 21, pp. 06015010- ,(2016) , 10.1061/(ASCE)HE.1943-5584.0001272
Jane Elith, Steven J. Phillips, Trevor Hastie, Miroslav Dudík, Yung En Chee, Colin J. Yates, A statistical explanation of MaxEnt for ecologists Diversity and Distributions. ,vol. 17, pp. 43- 57 ,(2011) , 10.1111/J.1472-4642.2010.00725.X
Fernando Nardi, Enrique R. Vivoni, Salvatore Grimaldi, Investigating a floodplain scaling relation using a hydrogeomorphic delineation method Water Resources Research. ,vol. 42, ,(2006) , 10.1029/2005WR004155
M. Convertino, A. Troccoli, F. Catani, Detecting fingerprints of landslide drivers: A MaxEnt model Journal of Geophysical Research. ,vol. 118, pp. 1367- 1386 ,(2013) , 10.1002/JGRF.20099
Matteo Convertino, Riccardo Rigon, Amos Maritan, Ignacio Rodriguez-Iturbe, Andrea Rinaldo, Probabilistic structure of the distance between tributaries of given size in river networks Water Resources Research. ,vol. 43, ,(2007) , 10.1029/2007WR006176