Stabilization of oscillators subject to dry friction: Finite time convergence versus exponential decay results

作者: Alexandre Cabot

DOI: 10.1090/S0002-9947-07-03990-6

关键词:

摘要: We investigate the dynamics of an oscillator subject to dry friction via following differential inclusion: (S) x(t) + ∂Φ(x(t)) ∇f(x(t)) ∋0, t ≥ 0, where f: R n → is a smooth potential and Φ: convex function. The modelized by subdifferential term -∂Φ(x). When 0 ∈ int(∂Φ(0)) (dry condition), it was shown Adly, Attouch, Cabot (2006) that unique solution converges in finite time toward equilibrium state.Too provided -∇f(x ∞ ) int(∂Φ(0)). In this paper, we study delicate case vector belongs boundary set ∂Φ(0). prove either or speed convergence exponential. Φ = |.|+b|.| 2 /2, > b obtain existence critical coefficient be below which every stabilizes time. It also geometry ∂Φ(0) plays central role analysis.

参考文章(10)
Samir Adly, Hedy Attouch, Alexandre Cabot, Finite Time Stabilization of Nonlinear Oscillators Subject to dry Friction Springer, Boston, MA. ,vol. 12, pp. 289- 304 ,(2006) , 10.1007/0-387-29195-4_24
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert North-Holland Pub. Co , American Elsevier Pub. Co.. ,(1973)
Dominic William Jordan, Peter Smith, Nonlinear ordinary differential equations ,(1977)
Samir Adly, Daniel Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems Journal de Mathématiques Pures et Appliquées. ,vol. 83, pp. 17- 51 ,(2004) , 10.1016/S0021-7824(03)00071-0
H Amann, JI Diaz, None, A note on the dynamics of an oscillator in the presence of strong friction Nonlinear Analysis-theory Methods & Applications. ,vol. 55, pp. 209- 216 ,(2003) , 10.1016/S0362-546X(03)00221-9
H. Cabannes, H. Neunzert, Study of motions of a vibrating string subject to solid friction Mathematical Methods in The Applied Sciences. ,vol. 3, pp. 287- 300 ,(1981) , 10.1002/MMA.1670030120
D. Goeleven, D. Motreanu, Y. Dumont, M. Rochdi, Variational and Hemivariational Inequalities : Theory, Methods and Applications Springer US. ,(2003) , 10.1007/978-1-4419-8610-8
Manuel D. P. Monteiro Marques, Differential Inclusions in Nonsmooth Mechanical Problems Birkhäuser Basel. ,(1993) , 10.1007/978-3-0348-7614-8