First‐Order Phase Transition in a Gas of Long Thin Rods

作者: Robert Zwanzig

DOI: 10.1063/1.1734518

关键词:

摘要: Onsager's prediction of a first‐order phase transition in gas long thin rods is verified by extensive calculations on simple model. The molecules are rectangular parallelepipeds, length l and square cross section d×d. molecular axes can point only three mutually perpendicular directions. Virial coefficients, up to the seventh, calculated exactly as functions orientation, limit l→ ∞, d→0, l2d=constant. predicted theory, based second virial approximation potential mean force space relative orientations, observed also when all coefficients seventh included. expansion appears converge well for isotropic phase; but properties anisotropic depend sensitively order approximation.

参考文章(9)
P.W. Kasteleyn, The statistics of dimers on a lattice Physica. ,vol. 27, pp. 1209- 1225 ,(1961) , 10.1016/0031-8914(61)90063-5
Edmund A. DiMarzio, Statistics of Orientation Effects in Linear Polymer Molecules Journal of Chemical Physics. ,vol. 35, pp. 658- 669 ,(1961) , 10.1063/1.1731986
William G. Hoover, Andrew G. De Rocco, Sixth and Seventh Virial Coefficients for the Parallel Hard‐Cube Model The Journal of Chemical Physics. ,vol. 36, pp. 3141- 3162 ,(1962) , 10.1063/1.1732443
Akira Isihara, Theory of Anisotropic Colloidal Solutions The Journal of Chemical Physics. ,vol. 19, pp. 1142- 1147 ,(1951) , 10.1063/1.1748493
H. N. V. Temperley, Michael E. Fisher, Dimer problem in statistical mechanics-an exact result Philosophical Magazine. ,vol. 6, pp. 1061- 1063 ,(1961) , 10.1080/14786436108243366
B. J. Alder, T. E. Wainwright, Phase Transition in Elastic Disks Physical Review. ,vol. 127, pp. 359- 361 ,(1962) , 10.1103/PHYSREV.127.359
Paul J Flory, Phase equilibria in solutions of rod-like particles Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 234, pp. 73- 89 ,(1956) , 10.1098/RSPA.1956.0016
M. De, Handbuch der Physik Journal of Modern Optics. ,vol. 4, pp. 53- 53 ,(1957) , 10.1080/713826071