The Algebraic Geometry of Competitive Equilibrium

作者: Lawrence E Blume , William R Zame , None

DOI: 10.1007/978-3-642-77671-7_3

关键词:

摘要: The classical tools of general equilibrium theory are convexity and topology. One Debreu’s lasting contributions has been to show how the differential topology may serve yield more refined information about equilibrium. In particular, Debreu (1970) showed that could provide a rigorous formalization “counting equations unknowns” satisfyȧctory result on determinacy

参考文章(15)
Stephen H. Schanuel, Leo K. Simon, William R. Zame, The Algebraic Geometry of Games and the Tracing Procedure Game Equilibrium Models II. pp. 9- 43 ,(1991) , 10.1007/978-3-662-07365-0_3
J. Bochnak, M. Coste, M-F Roy, Géométrie algébrique réelle Springer-Verlag. ,(1987)
Stanisław Łojasiewicz, Ensembles semi-analytiques Institut des Hautes Etudes Scientifiques. ,(1965)
Sérgio Ribeiro da Costa Werlang, Mario Rui Pascoa, Local concavifiability of preferences and determinacy of equilibrium Research Papers in Economics. ,(1991)
William Zame, Lawrence Blume, The Algebraic Geometry of Perfect and Sequential Equilibrium Research Papers in Economics. ,(1993)
S. N. Afriat, THE CONSTRUCTION OF UTILITY FUNCTIONS FROM EXPENDITURE DATA International Economic Review. ,vol. 8, pp. 67- ,(1967) , 10.2307/2525382
A. M. Gabriélov, Projections of semi-analytic sets Functional Analysis and Its Applications. ,vol. 2, pp. 282- 291 ,(1968) , 10.1007/BF01075680
Trout Rader, Nice Demand Functions Econometrica. ,vol. 41, pp. 913- 935 ,(1973) , 10.2307/1913814
Rosa L Matzkin, Marcel K Richter, Testing strictly concave rationality Journal of Economic Theory. ,vol. 53, pp. 287- 303 ,(1991) , 10.1016/0022-0531(91)90157-Y