Application of dynamic partial least squares to complex processes

作者: Abdullah S. Bothinah

DOI:

关键词:

摘要:

参考文章(119)
Hervé Abdi, Partial least squares regression and projection on latent structure regression (PLS Regression) Wiley Interdisciplinary Reviews: Computational Statistics. ,vol. 2, pp. 97- 106 ,(2010) , 10.1002/WICS.51
L. E. Wangen, B. R. Kowalski, A multiblock partial least squares algorithm for investigating complex chemical systems Journal of Chemometrics. ,vol. 3, pp. 3- 20 ,(1989) , 10.1002/CEM.1180030104
Ben C. Juricek, Dale E. Seborg, Wallace E. Larimore, Identification of the Tennessee Eastman challenge process with subspace methods IFAC Proceedings Volumes. ,vol. 33, pp. 1337- 1351 ,(2000) , 10.1016/S0967-0661(01)00124-1
N. L. Ricker, The use of biased least-squares estimators for parameters in discrete-time pulse-response models Industrial & Engineering Chemistry Research. ,vol. 27, pp. 343- 350 ,(1988) , 10.1021/IE00074A023
H. Akaike, A new look at the statistical model identification IEEE Transactions on Automatic Control. ,vol. 19, pp. 716- 723 ,(1974) , 10.1109/TAC.1974.1100705
Jong-Min Lee, S. Joe Qin, In-Beum Lee, Fault detection and diagnosis based on modified independent component analysis Aiche Journal. ,vol. 52, pp. 3501- 3514 ,(2006) , 10.1002/AIC.10978
Theodora Kourti, Jennifer Lee, John F. Macgregor, Experiences with industrial applications of projection methods for multivariate statistical process control Computers & Chemical Engineering. ,vol. 20, ,(1996) , 10.1016/0098-1354(96)00132-9
Venkat Venkatasubramanian, Raghunathan Rengaswamy, Surya N. Kavuri, Kewen Yin, A review of process fault detection and diagnosis: Part III: Process history based methods Computers & Chemical Engineering. ,vol. 27, pp. 327- 346 ,(2003) , 10.1016/S0098-1354(02)00162-X
S. Joe Qin, Sergio Valle, Michael J. Piovoso, On unifying multiblock analysis with application to decentralized process monitoring Journal of Chemometrics. ,vol. 15, pp. 715- 742 ,(2001) , 10.1002/CEM.667
S.J. Qin, Partial least squares regression for recursive system identification conference on decision and control. pp. 2617- 2622 ,(1993) , 10.1109/CDC.1993.325671