Detection of involuntary human hand motions using Empirical Mode Decomposition and Hilbert-Huang Transform

作者: James Z. Zhang , Brant T. Price , Robert D. Adams , Kenneth Burbank , Theodore J. Knaga

DOI: 10.1109/MWSCAS.2008.4616760

关键词:

摘要: Involuntary human hand motions, or tremors, are normally regarded as a non-stationary process. Traditional analysis methods approximate tremor signals stationary processes. In this paper, we present novel detection method using Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT). The results expected to be helpful for real-time suppression.

参考文章(5)
A Anouti, W C Koller, Tremor disorders. Diagnosis and management. Western Journal of Medicine. ,vol. 162, pp. 510- 513 ,(1995)
Norden E. Huang, Zheng Shen, Steven R. Long, Manli C. Wu, Hsing H. Shih, Quanan Zheng, Nai-Chyuan Yen, Chi Chao Tung, Henry H. Liu, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 903- 995 ,(1998) , 10.1098/RSPA.1998.0193
Jing Zhang, Fang Chu, Real-time modeling and prediction of physiological hand tremor international conference on acoustics, speech, and signal processing. ,vol. 5, pp. 645- 648 ,(2005) , 10.1109/ICASSP.2005.1416386
J. Jakubowski, K. Kwiatos, A. Chwaleba, S. Osowski, Higher order statistics and neural network for tremor recognition IEEE Transactions on Biomedical Engineering. ,vol. 49, pp. 152- 159 ,(2002) , 10.1109/10.979354
P.S. Slack, X. Ma, Time dependency assessment of muscular fatigue index and hand tremor under operating conditions international conference of the ieee engineering in medicine and biology society. ,vol. 2007, pp. 4822- 4825 ,(2007) , 10.1109/IEMBS.2007.4353419