Nöther conserved quantities and entropy in general relativity

作者: G. Allemandi , L. Fatibene , M. Ferraris , M. Francaviglia , M. Raiteri

DOI: 10.1007/978-88-470-2101-3_6

关键词:

摘要: In the framework of classical field theories, notions conserved quantities and entropy for stationary solutions covariant theories gravitation, e. g. Einstein equations General Relativity, are discussed. Nother theorem is used to provide correct definition (covariantly) such as mass angular momentum. The variation then defined a macroscopical quantity which satisfies Clausiuslike first principle thermodynamics. Finally, proposal non-stationary

参考文章(27)
L. Fatibene, M. Ferraris, M. Francaviglia, M. Raiteri, Remarks on conserved quantities and entropy of BTZ black hole solutions. I. The general setting Physical Review D. ,vol. 60, pp. 124012- ,(1999) , 10.1103/PHYSREVD.60.124012
Luigi Mangiarotti, Gennadi A Sardanashvily, Connections in Classical and Quantum Field Theory ,(2000)
Michel Lapidus, Domain of Dependence Journal of Mathematical Physics. ,vol. 11, pp. 437- 449 ,(1970) , 10.1063/1.1665157
G. Giachetta, G. Sardanashvily, Stress-Energy-Momentum Tensors in Lagrangian Field Theory. Part 1. Superpotentials arXiv: General Relativity and Quantum Cosmology. ,(1995)
Valeri Frolov, Black Hole Entropy and Physics at Planckian Scales String Gravity and Physics at the Planck Energy Scale. ,vol. 476, pp. 187- 208 ,(1996) , 10.1007/978-94-009-0237-4_8
J Katz, A note on Komar's anomalous factor Classical and Quantum Gravity. ,vol. 2, pp. 423- 425 ,(1985) , 10.1088/0264-9381/2/3/018
Peter W Michor, Ivan Kolář, Jan Slovák, None, Natural operations in differential geometry ,(1993)
R B Mann, G Potvin, M Raiteri, Energy for N-body motion in two-dimensional gravity Classical and Quantum Gravity. ,vol. 17, pp. 4941- 4958 ,(2000) , 10.1088/0264-9381/17/23/311