Gradient adversarial training of neural networks

作者: Ayan Tuhinendu Sinha , Zhao Chen , Vijay Badrinarayanan , Andrew Rabinovich

DOI:

关键词:

摘要: We propose gradient adversarial training, an auxiliary deep learning framework applicable to different machine learning problems. In gradient adversarial training, we leverage a prior …

参考文章(28)
David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, Learning representations by back-propagating errors Nature. ,vol. 323, pp. 696- 699 ,(1988) , 10.1038/323533A0
Diederik P. Kingma, Jimmy Ba, Adam: A Method for Stochastic Optimization arXiv: Learning. ,(2014)
Joan Bruna, Christian Szegedy, Ilya Sutskever, Ian Goodfellow, Wojciech Zaremba, Rob Fergus, Dumitru Erhan, None, Intriguing properties of neural networks arXiv: Computer Vision and Pattern Recognition. ,(2013)
Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Victor Lempitsky, Domain-Adversarial Training of Neural Networks Domain Adaptation in Computer Vision Applications. ,vol. 17, pp. 189- 209 ,(2017) , 10.1007/978-3-319-58347-1_10
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, Distilling the Knowledge in a Neural Network arXiv: Machine Learning. ,(2015)
Matthew D. Zeiler, Rob Fergus, Visualizing and Understanding Convolutional Networks european conference on computer vision. pp. 818- 833 ,(2014) , 10.1007/978-3-319-10590-1_53
Luca Rigazio, Shixiang Gu, Towards Deep Neural Network Architectures Robust to Adversarial Examples arXiv: Learning. ,(2014)
Christian Szegedy, Ian J. Goodfellow, Jonathon Shlens, Explaining and Harnessing Adversarial Examples arXiv: Machine Learning. ,(2014)
Jost Tobias Springenberg, Alexey Dosovitskiy, Martin Riedmiller, Thomas Brox, Striving for Simplicity: The All Convolutional Net arXiv: Learning. ,(2014)
L.K. Hansen, P. Salamon, Neural network ensembles IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 12, pp. 993- 1001 ,(1990) , 10.1109/34.58871