Minimal tangent visibility graphs

作者: Michel Pocchiola , Gert Vegter

DOI: 10.1016/0925-7721(95)00016-X

关键词:

摘要: … The endpoints of these bitangents split the boundaries of the obstacles into a sequence of arcs; these arcs and the bitangents are the edges of the so-called tangent visibility graph …

参考文章(20)
Subir Kumar Ghosh, David M. Mount, An output-sensitive algorithm for computing visibility SIAM Journal on Computing. ,vol. 20, pp. 888- 910 ,(1991) , 10.1137/0220055
Robert Cori, UN CODE POUR LES GRAPHES PLANAIRES ET SES APPLICATIONS. Société mathématique de France. ,(1975)
Jacob E. Goodman, Richard Pollack, Allowable Sequences and Order Types in Discrete and Computational Geometry Springer, Berlin, Heidelberg. pp. 103- 134 ,(1993) , 10.1007/978-3-642-58043-7_6
Branko Grünbaum, G. C. Shephard, Rotation and winding numbers for planar polygons and curves Transactions of the American Mathematical Society. ,vol. 322, pp. 169- 187 ,(1990) , 10.1090/S0002-9947-1990-1024774-2
Takao Asano, Tetsuo Asano, Leonidas Guibas, John Hershberger, Hiroshi Imai, Visibility of disjoint polygons Algorithmica. ,vol. 1, pp. 49- 63 ,(1986) , 10.1007/BF01840436
Xiaojun Shen, Herbert Edelsbrunner, A tight lower bound on the size of visibility graphs Information Processing Letters. ,vol. 26, pp. 61- 64 ,(1987) , 10.1016/0020-0190(87)90038-X
S. Kapoor, S. N. Maheshwari, Efficient algorithms for Euclidean shortest path and visibility problems with polygonal obstacles symposium on computational geometry. pp. 172- 182 ,(1988) , 10.1145/73393.73411
Emo Welzl, Constructing the visibility graph for n-line segments in O(n2) time Information Processing Letters. ,vol. 20, pp. 167- 171 ,(1985) , 10.1016/0020-0190(85)90044-4
Hans Rohnert, Shortest paths in the plane with convex polygonal obstacles Information Processing Letters. ,vol. 23, pp. 71- 76 ,(1986) , 10.1016/0020-0190(86)90045-1
Douglas Campbell, John Higgins, Minimal visibility graphs Information Processing Letters. ,vol. 37, pp. 49- 53 ,(1991) , 10.1016/0020-0190(91)90249-H