Primal separation algorithms

作者: Andrea Lodi , Adam N. Letchford

DOI: 10.1007/S10288-003-0012-8

关键词:

摘要: Given an integer polyhedron \(P_I \subset \mathbb{R}^n\), point \({\bar x} \in P_I\), and a \(x^* \mathbb{R}^n \setminus the primal separation problem is of finding linear inequality which valid for PI, violated by x*, satisfied at equality \(\bar x\). The plays key role in approach to programming. In this paper we examine complexity several well-known classes inequalities various important combinatorial optimization problems, including knapsack, stable set travelling salesman problems.

参考文章(34)
Hiroshi Nagamochi, Kazuhiro Nishimura, Toshihide Ibaraki, Computing All Small Cuts in an Undirected Network SIAM Journal on Discrete Mathematics. ,vol. 10, pp. 469- 481 ,(1997) , 10.1137/S0895480194271323
Václav Chvátal, Edmonds polytopes and weakly hamiltonian graphs Mathematical Programming. ,vol. 5, pp. 29- 40 ,(1973) , 10.1007/BF01580109
Ralf Borndörfer, Robert Weismantel, Set packing relaxations of some integer programs Mathematical Programming. ,vol. 88, pp. 425- 450 ,(2000) , 10.1007/PL00011381
C.H. Papadimitriou, M. Yannakakis, The complexity of facets (and some facets of complexity) Journal of Computer and System Sciences. ,vol. 28, pp. 244- 259 ,(1984) , 10.1016/0022-0000(84)90068-0
Martin Grötschel, László Lovász, Alexander Schrijver, Geometric Algorithms and Combinatorial Optimization ,(1988)
Manfred W. Padberg, M. R. Rao, Odd Minimum Cut-Sets and b-Matchings Mathematics of Operations Research. ,vol. 7, pp. 67- 80 ,(1982) , 10.1287/MOOR.7.1.67
Egon Balas, Facets of the knapsack polytope Mathematical Programming. ,vol. 8, pp. 146- 164 ,(1975) , 10.1007/BF01580440
A. M. H. Gerards, A. Schrijver, Matrices with the Edmonds-Johnson property Combinatorica. ,vol. 6, pp. 365- 379 ,(1986) , 10.1007/BF02579262
Béla Bollobás, Paul Erdös, Cliques in random graphs Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 80, pp. 419- 427 ,(1976) , 10.1017/S0305004100053056
Adam N. Letchford, Separating a Superclass of Comb Inequalities in Planar Graphs Mathematics of Operations Research. ,vol. 25, pp. 443- 454 ,(2000) , 10.1287/MOOR.25.3.443.12213