Various exact solutions of nonlinear Schrödinger equation with two nonlinear terms

作者: Mingliang Wang , Xiangzheng Li , Jinliang Zhang

DOI: 10.1016/J.CHAOS.2005.10.009

关键词:

摘要: Abstract Four kinds of exact solutions to nonlinear Schrodinger equation with two higher order terms are obtained by a subsidiary ordinary differential method (sub-equation for short). They the bell type solitary waves, kink algebraic waves and sinusoidal waves.

参考文章(30)
VB Matveev, MA Salle, Darboux transformations and solitons ,(1992)
K. Hayata, M. Koshiba, Algebraic solitary-wave solutions of a nonlinear Schrödinger equation. Physical Review E. ,vol. 51, pp. 1499- 1502 ,(1995) , 10.1103/PHYSREVE.51.1499
Xiaoyan Li, Sen Yang, Mingliang Wang, The periodic wave solutions for the (3+1)-dimensional Klein-Gordon-Schrodinger equations Chaos Solitons & Fractals. ,vol. 25, pp. 629- 636 ,(2005) , 10.1016/J.CHAOS.2004.11.028
Dun Zhao, Hong-Gang Luo, Shun-Jin Wang, Wei Zuo, A direct truncation method for finding abundant exact solutions and application to the one-dimensional higher-order Schrodinger equation Chaos Solitons & Fractals. ,vol. 24, pp. 533- 547 ,(2005) , 10.1016/J.CHAOS.2004.09.016
Cangtao Zhou, X. T. He, Shigang Chen, Basic dynamic properties of the high-order nonlinear Schrödinger equation Physical Review A. ,vol. 46, pp. 2277- 2285 ,(1992) , 10.1103/PHYSREVA.46.2277
Yubin Zhou, Mingliang Wang, Yueming Wang, Periodic wave solutions to a coupled KdV equations with variable coefficients Physics Letters A. ,vol. 308, pp. 31- 36 ,(2003) , 10.1016/S0375-9601(02)01775-9