A weak Asplund space whose dual is not weak* fragmentable

作者: Petar S. Kenderov , Warren B. Moors , Scott Sciffer

DOI: 10.1090/S0002-9939-01-06002-6

关键词:

摘要: Under the assumption that there exists in unit interval [0, 1] an uncountable set A with property every continuous mapping from a Baire metric space B into is constant on some non-empty open subset of B, we construct Banach X such (X∗,weak∗) belongs to Stegall’s class but not fragmentable.

参考文章(6)
Ryszard Frankiewicz, Kenneth Kunen, Solution of Kuratowski's problem on function having the Baire property, I Fundamenta Mathematicae. ,vol. 128, pp. 171- 180 ,(1987) , 10.4064/FM-128-3-171-180
Warren B. Moors, Scott Sciffer, Sigma-fragmentable spaces that are not countable unions of fragmentable subspaces Topology and its Applications. ,vol. 119, pp. 279- 286 ,(2002) , 10.1016/S0166-8641(01)00073-6
P. S. Kenderov, J. Orihuela, A generic factorization theorem Mathematika. ,vol. 42, pp. 56- 66 ,(1995) , 10.1112/S0025579300011359
Ondřej Kalenda, Stegall compact spaces which are not fragmentable Topology and its Applications. ,vol. 96, pp. 121- 132 ,(1999) , 10.1016/S0166-8641(98)00045-5
I. Namioka, R. Pol, MAPPINGS OF BAIRE SPACES INTO FUNCTION SPACES AND KADEC RENORMING Israel Journal of Mathematics. ,vol. 78, pp. 1- 20 ,(1992) , 10.1007/BF02801567
George Bachman, Functional Analysis ,(1966)