PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.

作者: Indika Kahanda , Christopher Funk , Karin Verspoor , Asa Ben-Hur

DOI: 10.12688/F1000RESEARCH.6670.1

关键词:

摘要: The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the abnormalities associated with diseases. At present, only small fraction of protein coding genes have HPO annotations. But, researchers believe that large portion currently unannotated genes are related to disease phenotypes. Therefore, it is important predict gene-HPO term associations using accurate computational methods. In this work we demonstrate performance advantage structured SVM approach which was shown be highly effective Gene Ontology prediction in comparison to several baseline Furthermore, we highlight collection informative data sources suitable problem predicting associations, including large scale literature mining data.

参考文章(28)
Ségolène Aymé, J. Schmidtke, Networking for rare diseases: a necessity for Europe Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. ,vol. 50, pp. 1477- 1483 ,(2007) , 10.1007/S00103-007-0381-9
Artem Sokolov, Christopher Funk, Kiley Graim, Karin Verspoor, Asa Ben-Hur, Combining heterogeneous data sources for accurate functional annotation of proteins BMC Bioinformatics. ,vol. 14, pp. 1- 13 ,(2013) , 10.1186/1471-2105-14-S3-S10
ARTEM SOKOLOV, ASA BEN-HUR, HIERARCHICAL CLASSIFICATION OF GENE ONTOLOGY TERMS USING THE GOstruct METHOD Journal of Bioinformatics and Computational Biology. ,vol. 8, pp. 357- 376 ,(2010) , 10.1142/S0219720010004744
Andrew Chatr-aryamontri, Bobby-Joe Breitkreutz, Sven Heinicke, Lorrie Boucher, Andrew Winter, Chris Stark, Julie Nixon, Lindsay Ramage, Nadine Kolas, Lara O’Donnell, Teresa Reguly, Ashton Breitkreutz, Adnane Sellam, Daici Chen, Christie Chang, Jennifer Rust, Michael Livstone, Rose Oughtred, Kara Dolinski, Mike Tyers, The BioGRID interaction database: 2013 update Nucleic Acids Research. ,vol. 41, pp. 816- 823 ,(2012) , 10.1093/NAR/GKS1158
Cynthia L. Smith, Janan T. Eppig, The mammalian phenotype ontology: enabling robust annotation and comparative analysis Wiley Interdisciplinary Reviews: Systems Biology and Medicine. ,vol. 1, pp. 390- 399 ,(2009) , 10.1002/WSBM.44
D. Wallace, G Singh, M. Lott, J. Hodge, T. Schurr, A. Lezza, L. Elsas, E. Nikoskelainen, Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy Science. ,vol. 242, pp. 1427- 1430 ,(1988) , 10.1126/SCIENCE.3201231
Peter N. Robinson, Deep phenotyping for precision medicine Human Mutation. ,vol. 33, pp. 777- 780 ,(2012) , 10.1002/HUMU.22080
D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, C. v. Mering, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored Nucleic Acids Research. ,vol. 39, pp. 561- 568 ,(2011) , 10.1093/NAR/GKQ973
Leander Schietgat, Celine Vens, Jan Struyf, Hendrik Blockeel, Dragi Kocev, Sašo Džeroski, Predicting gene function using hierarchical multi-label decision tree ensembles BMC Bioinformatics. ,vol. 11, pp. 2- 2 ,(2010) , 10.1186/1471-2105-11-2
Panwen Wang, Wing-Fu Lai, Mulin Jun Li, Feng Xu, Hari Krishna Yalamanchili, Robin Lovell-Badge, Junwen Wang, Inference of Gene-Phenotype Associations via Protein-Protein Interaction and Orthology PLoS ONE. ,vol. 8, pp. e77478- ,(2013) , 10.1371/JOURNAL.PONE.0077478