Parameter-dependent integrals: some mathematical tools

作者: K. Breitung

DOI: 10.1007/978-0-387-34866-7_8

关键词:

摘要: In many reliability problems integrals of the following form (1) are interest. Here f(x, τ) is usually a probability density and g(x, limit state function. Both functions depend on parameter vector τ. Then F(τ) denotes failure for value

参考文章(7)
Karl Breitung, Parameter Sensitivity of Failure Probabilities Springer, Berlin, Heidelberg. pp. 43- 51 ,(1991) , 10.1007/978-3-642-84362-4_5
Karl Breitung, Asymptotic approximations for multinormal integrals Journal of Engineering Mechanics-asce. ,vol. 110, pp. 357- 366 ,(1984) , 10.1061/(ASCE)0733-9399(1984)110:3(357)
Armen Der Kiureghian, Yan Zhang, Chun‐Ching Li, Inverse Reliability Problem Journal of Engineering Mechanics-asce. ,vol. 120, pp. 1154- 1159 ,(1994) , 10.1061/(ASCE)0733-9399(1994)120:5(1154)
Karl Breitung, Probability Approximations by Log Likelihood Maximization Journal of Engineering Mechanics-asce. ,vol. 117, pp. 457- 477 ,(1991) , 10.1061/(ASCE)0733-9399(1991)117:3(457)
Armen Der Kiureghian, Mario De Stefano, Efficient algorithm for second-order reliability analysis Journal of Engineering Mechanics-asce. ,vol. 117, pp. 2904- 2923 ,(1991) , 10.1061/(ASCE)0733-9399(1991)117:12(2904)
Peter Bjerager, Steen Krenk, Parametric Sensitivity in First Order Reliability Theory Journal of Engineering Mechanics-asce. ,vol. 115, pp. 1577- 1582 ,(1989) , 10.1061/(ASCE)0733-9399(1989)115:7(1577)