Density functional theory and the von Weizsacker method

作者: W Jones , W H Young

DOI: 10.1088/0022-3719/4/11/007

关键词:

摘要: The response function of a uniform extended system noninteracting fermions, and thus the energy weakly perturbed this kind, is computed exactly in von Weizsacker approximation; it shown that (a) original coefficient leads to an upper bound which becomes asymptotically exact for short wavelength perturbations (b) reduced by factor 9 lower long waves. Generalisations these results are discussed case when fermions interacting electrons.

参考文章(15)
A Meyer, W H Young, Pseudopotentials and the Thomas-Fermi method for metals Journal of Physics C: Solid State Physics. ,vol. 3, ,(1970) , 10.1088/0022-3719/3/3S/308
Harry M. Schey, Judah L. Schwartz, QUANTUM CORRECTIONS IN THE THOMAS-FERMI MODEL Physical Review. ,vol. 137, pp. 709- 716 ,(1965) , 10.1103/PHYSREV.137.A709
Katsumi Yonei, Yasuo Tomishima, On the Weizsäcker Correction to the Thomas-Fermi Theory of the Atom Journal of the Physical Society of Japan. ,vol. 20, pp. 1051- 1057 ,(1965) , 10.1143/JPSJ.20.1051
K J le Couteur, The Dirac density matrix Proceedings of the Physical Society. ,vol. 84, pp. 837- 843 ,(1964) , 10.1088/0370-1328/84/6/301
P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas Physical Review. ,vol. 136, pp. 864- 871 ,(1964) , 10.1103/PHYSREV.136.B864
N.H. March, The Thomas-Fermi approximation in quantum mechanics Advances in Physics. ,vol. 6, pp. 1- 101 ,(1957) , 10.1080/00018735700101156
N H March, W H Young, Variational Methods based on the Density Matrix Proceedings of the Physical Society. ,vol. 72, pp. 182- 192 ,(1958) , 10.1088/0370-1328/72/2/302